用于下一代加速器靶设施的新型材料

K. AmmiganFermi National Accelerator Laboratory, Batavia, IL, USA, G. AroraFermi National Accelerator Laboratory, Batavia, IL, USA, S. BidharFermi National Accelerator Laboratory, Batavia, IL, USA, A. BurleighFermi National Accelerator Laboratory, Batavia, IL, USA, F. PellemoineFermi National Accelerator Laboratory, Batavia, IL, USA, A. CouetUniversity of Wisconsin-Madison, Madison, WI, USA, N. CrnkovichUniversity of Wisconsin-Madison, Madison, WI, USA, I. SzlufarskaUniversity of Wisconsin-Madison, Madison, WI, USA
{"title":"用于下一代加速器靶设施的新型材料","authors":"K. AmmiganFermi National Accelerator Laboratory, Batavia, IL, USA, G. AroraFermi National Accelerator Laboratory, Batavia, IL, USA, S. BidharFermi National Accelerator Laboratory, Batavia, IL, USA, A. BurleighFermi National Accelerator Laboratory, Batavia, IL, USA, F. PellemoineFermi National Accelerator Laboratory, Batavia, IL, USA, A. CouetUniversity of Wisconsin-Madison, Madison, WI, USA, N. CrnkovichUniversity of Wisconsin-Madison, Madison, WI, USA, I. SzlufarskaUniversity of Wisconsin-Madison, Madison, WI, USA","doi":"arxiv-2405.18545","DOIUrl":null,"url":null,"abstract":"As beam power continues to increase in next-generation accelerator\nfacilities, high-power target systems face crucial challenges. Components like\nbeam windows and particle-production targets must endure significantly higher\nlevels of particle fluence. The primary beam's energy deposition causes rapid\nheating (thermal shock) and induces microstructural changes (radiation damage)\nwithin the target material. These effects ultimately deteriorate the\ncomponents' properties and lifespan. With conventional materials already\nstretched to their limits, we are exploring novel materials including\nHigh-Entropy Alloys and Electrospun Nanofibers that offer a fresh approach to\nenhancing tolerance against thermal shock and radiation damage. Following an\nintroduction to the challenges facing high-power target systems, we will give\nan overview of the promising advancements we have made so far in customizing\nthe compositions and microstructures of these pioneering materials. Our focus\nis on optimizing their in-beam thermomechanical and physics performance.\nAdditionally, we will outline our ongoing plans for in-beam irradiation\nexperiments and advanced material characterizations. The primary goal of this\nresearch is to push the frontiers of target materials, thereby enabling future\nmulti-MW facilities that will benefit various programs in high-energy physics\nand beyond.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel materials for next-generation accelerator target facilities\",\"authors\":\"K. AmmiganFermi National Accelerator Laboratory, Batavia, IL, USA, G. AroraFermi National Accelerator Laboratory, Batavia, IL, USA, S. BidharFermi National Accelerator Laboratory, Batavia, IL, USA, A. BurleighFermi National Accelerator Laboratory, Batavia, IL, USA, F. PellemoineFermi National Accelerator Laboratory, Batavia, IL, USA, A. CouetUniversity of Wisconsin-Madison, Madison, WI, USA, N. CrnkovichUniversity of Wisconsin-Madison, Madison, WI, USA, I. SzlufarskaUniversity of Wisconsin-Madison, Madison, WI, USA\",\"doi\":\"arxiv-2405.18545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As beam power continues to increase in next-generation accelerator\\nfacilities, high-power target systems face crucial challenges. Components like\\nbeam windows and particle-production targets must endure significantly higher\\nlevels of particle fluence. The primary beam's energy deposition causes rapid\\nheating (thermal shock) and induces microstructural changes (radiation damage)\\nwithin the target material. These effects ultimately deteriorate the\\ncomponents' properties and lifespan. With conventional materials already\\nstretched to their limits, we are exploring novel materials including\\nHigh-Entropy Alloys and Electrospun Nanofibers that offer a fresh approach to\\nenhancing tolerance against thermal shock and radiation damage. Following an\\nintroduction to the challenges facing high-power target systems, we will give\\nan overview of the promising advancements we have made so far in customizing\\nthe compositions and microstructures of these pioneering materials. Our focus\\nis on optimizing their in-beam thermomechanical and physics performance.\\nAdditionally, we will outline our ongoing plans for in-beam irradiation\\nexperiments and advanced material characterizations. The primary goal of this\\nresearch is to push the frontiers of target materials, thereby enabling future\\nmulti-MW facilities that will benefit various programs in high-energy physics\\nand beyond.\",\"PeriodicalId\":501318,\"journal\":{\"name\":\"arXiv - PHYS - Accelerator Physics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Accelerator Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.18545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.18545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着下一代加速器设施束流功率的不断提高,高功率靶系统面临着严峻的挑战。束窗和粒子产生靶等部件必须承受更高水平的粒子流。主光束的能量沉积会导致快速加热(热冲击),并诱发靶材料内部的微结构变化(辐射损伤)。这些影响最终会降低部件的性能和寿命。在传统材料已经达到极限的情况下,我们正在探索新型材料,包括高熵合金和电纺纳米纤维,它们为增强对热冲击和辐射损伤的耐受性提供了一种全新的方法。在介绍了大功率靶系统所面临的挑战之后,我们将概述迄今为止在定制这些先锋材料的成分和微结构方面所取得的令人鼓舞的进展。此外,我们还将概述正在进行的束内辐照实验和先进材料表征计划。这项研究的主要目标是推动靶材料的前沿发展,从而使未来的多兆瓦设施能够造福于高能物理及其他领域的各种计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel materials for next-generation accelerator target facilities
As beam power continues to increase in next-generation accelerator facilities, high-power target systems face crucial challenges. Components like beam windows and particle-production targets must endure significantly higher levels of particle fluence. The primary beam's energy deposition causes rapid heating (thermal shock) and induces microstructural changes (radiation damage) within the target material. These effects ultimately deteriorate the components' properties and lifespan. With conventional materials already stretched to their limits, we are exploring novel materials including High-Entropy Alloys and Electrospun Nanofibers that offer a fresh approach to enhancing tolerance against thermal shock and radiation damage. Following an introduction to the challenges facing high-power target systems, we will give an overview of the promising advancements we have made so far in customizing the compositions and microstructures of these pioneering materials. Our focus is on optimizing their in-beam thermomechanical and physics performance. Additionally, we will outline our ongoing plans for in-beam irradiation experiments and advanced material characterizations. The primary goal of this research is to push the frontiers of target materials, thereby enabling future multi-MW facilities that will benefit various programs in high-energy physics and beyond.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信