{"title":"利用有限应变 HFGMC 微机械学预测软粘弹性复合材料的微屈曲现象","authors":"Jacob Aboudi , Rivka Gilat","doi":"10.1016/j.ijengsci.2024.104100","DOIUrl":null,"url":null,"abstract":"<div><p>A perturbation expansion is offered for the micromechanical prediction of the bifurcation buckling of soft viscoelastic composites with imperfections (e.g. wavy fibers). The composites of periodic microstructure are subjected to compressive loading and are undergoing large deformations. The perturbation expansion applied on the imperfect composites results in a zero and first order problems of perfect composites. In the former problem, loading exists and interfacial and periodicity conditions are imposed. In the latter one, however, loading is absent, the interfacial conditions possess complicated terms that have been already established by the zero order problem, and Bloch-Floquet boundary conditions are imposed. Both problems are solved by the high-fidelity generalized method of cells (HFGMC) micromechanical analysis. The ideal critical bifurcation stress can be readily predicted from the asymptotic values of the form of waviness growth with applied loading. This form enables also the estimation of the actual critical stress. The occurrence of the corresponding critical deformation and time is obtained by generating the stress-deformation response of the composite. The offered approach is illustrated for the prediction of bifurcation buckling of viscoelastic bi-layered and polymer matrix composites as well as porous materials. Finally, bifurcation buckling stresses of unidirectional composites in which the matrix is represented by the quasi-linear viscoelasticity theory are predicted. This quasi-linear viscoelasticity model exhibits constant damping which is observed by the actual viscoelastic behavior of biological materials.</p></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbuckling prediction of soft viscoelastic composites by the finite strain HFGMC micromechanics\",\"authors\":\"Jacob Aboudi , Rivka Gilat\",\"doi\":\"10.1016/j.ijengsci.2024.104100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A perturbation expansion is offered for the micromechanical prediction of the bifurcation buckling of soft viscoelastic composites with imperfections (e.g. wavy fibers). The composites of periodic microstructure are subjected to compressive loading and are undergoing large deformations. The perturbation expansion applied on the imperfect composites results in a zero and first order problems of perfect composites. In the former problem, loading exists and interfacial and periodicity conditions are imposed. In the latter one, however, loading is absent, the interfacial conditions possess complicated terms that have been already established by the zero order problem, and Bloch-Floquet boundary conditions are imposed. Both problems are solved by the high-fidelity generalized method of cells (HFGMC) micromechanical analysis. The ideal critical bifurcation stress can be readily predicted from the asymptotic values of the form of waviness growth with applied loading. This form enables also the estimation of the actual critical stress. The occurrence of the corresponding critical deformation and time is obtained by generating the stress-deformation response of the composite. The offered approach is illustrated for the prediction of bifurcation buckling of viscoelastic bi-layered and polymer matrix composites as well as porous materials. Finally, bifurcation buckling stresses of unidirectional composites in which the matrix is represented by the quasi-linear viscoelasticity theory are predicted. This quasi-linear viscoelasticity model exhibits constant damping which is observed by the actual viscoelastic behavior of biological materials.</p></div>\",\"PeriodicalId\":14053,\"journal\":{\"name\":\"International Journal of Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020722524000843\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722524000843","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Microbuckling prediction of soft viscoelastic composites by the finite strain HFGMC micromechanics
A perturbation expansion is offered for the micromechanical prediction of the bifurcation buckling of soft viscoelastic composites with imperfections (e.g. wavy fibers). The composites of periodic microstructure are subjected to compressive loading and are undergoing large deformations. The perturbation expansion applied on the imperfect composites results in a zero and first order problems of perfect composites. In the former problem, loading exists and interfacial and periodicity conditions are imposed. In the latter one, however, loading is absent, the interfacial conditions possess complicated terms that have been already established by the zero order problem, and Bloch-Floquet boundary conditions are imposed. Both problems are solved by the high-fidelity generalized method of cells (HFGMC) micromechanical analysis. The ideal critical bifurcation stress can be readily predicted from the asymptotic values of the form of waviness growth with applied loading. This form enables also the estimation of the actual critical stress. The occurrence of the corresponding critical deformation and time is obtained by generating the stress-deformation response of the composite. The offered approach is illustrated for the prediction of bifurcation buckling of viscoelastic bi-layered and polymer matrix composites as well as porous materials. Finally, bifurcation buckling stresses of unidirectional composites in which the matrix is represented by the quasi-linear viscoelasticity theory are predicted. This quasi-linear viscoelasticity model exhibits constant damping which is observed by the actual viscoelastic behavior of biological materials.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.