Lei Xu, Xiutian Yao, Sen Yan, Zhang Wen, Jimei Xue
{"title":"复杂断块油田非主力油层分布精细表征及其开发模型","authors":"Lei Xu, Xiutian Yao, Sen Yan, Zhang Wen, Jimei Xue","doi":"10.1155/2024/2183265","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Improving the oil production from nonmain oil layers is crucial for the complex fault block oilfields during the late stage of high water cut development to ensure stable production and capacity expansion. However, the developing characterization of the nonmain layers and their remaining oil distribution is still inadequate. Developing an efficient mode of development remains a challenge. This paper presents a detailed characterization of the sedimentary microfacies and architecture of a nonmain reservoir based on core and logging data analysis. A flexible injection-production development strategy model was designed and applied in the Hetan oilfield, located in the southeast of Zhanhua Depression of Bohai Bay Basin as an example. The results show that the nonmain oil layer of the Hetan oilfield is composed of estuary bar microfacies sand bodies. Deposits of various shapes are formed on the side or in front of the main body of the estuary dam, which constitutes the nonmain oil reservoir. The lithology is fine, the sand body thickness is small, and the plane heterogeneity is strong. The distribution is banded, potato-shaped, and fragmented. The nonmain oil layer has a small oil-bearing area of 0.1-1.0 km<sup>2</sup> and a high oil saturation of over 58%. The Hetan oilfield has a significant amount of remaining oil enrichment and considerable potential for production digging. To optimize production, a flexible injection and production adjustment scheme is proposed, which includes designing multitarget horizontal wells and utilizing various methods such as optimizing well spacing, coupled injection, and cycle injection. Field tests conducted in the area have shown an increase in the recovery factor of nonmain oil layers from 16.7% to 28.5%. This indicates that identifying and characterizing nonmain oil layers through detailed analysis of sedimentary microfacies and reservoir architecture is useful in the late-stage development of complex fault block reservoirs to maintain sustainable and efficient oilfield development.</p>\n </div>","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"2024 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2183265","citationCount":"0","resultStr":"{\"title\":\"Fine Characterization of Nonmain Oil Layer Distributions in Complex Fault Block Oilfield and Its Development Model\",\"authors\":\"Lei Xu, Xiutian Yao, Sen Yan, Zhang Wen, Jimei Xue\",\"doi\":\"10.1155/2024/2183265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Improving the oil production from nonmain oil layers is crucial for the complex fault block oilfields during the late stage of high water cut development to ensure stable production and capacity expansion. However, the developing characterization of the nonmain layers and their remaining oil distribution is still inadequate. Developing an efficient mode of development remains a challenge. This paper presents a detailed characterization of the sedimentary microfacies and architecture of a nonmain reservoir based on core and logging data analysis. A flexible injection-production development strategy model was designed and applied in the Hetan oilfield, located in the southeast of Zhanhua Depression of Bohai Bay Basin as an example. The results show that the nonmain oil layer of the Hetan oilfield is composed of estuary bar microfacies sand bodies. Deposits of various shapes are formed on the side or in front of the main body of the estuary dam, which constitutes the nonmain oil reservoir. The lithology is fine, the sand body thickness is small, and the plane heterogeneity is strong. The distribution is banded, potato-shaped, and fragmented. The nonmain oil layer has a small oil-bearing area of 0.1-1.0 km<sup>2</sup> and a high oil saturation of over 58%. The Hetan oilfield has a significant amount of remaining oil enrichment and considerable potential for production digging. To optimize production, a flexible injection and production adjustment scheme is proposed, which includes designing multitarget horizontal wells and utilizing various methods such as optimizing well spacing, coupled injection, and cycle injection. Field tests conducted in the area have shown an increase in the recovery factor of nonmain oil layers from 16.7% to 28.5%. This indicates that identifying and characterizing nonmain oil layers through detailed analysis of sedimentary microfacies and reservoir architecture is useful in the late-stage development of complex fault block reservoirs to maintain sustainable and efficient oilfield development.</p>\\n </div>\",\"PeriodicalId\":12512,\"journal\":{\"name\":\"Geofluids\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/2183265\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofluids\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/2183265\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofluids","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/2183265","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Fine Characterization of Nonmain Oil Layer Distributions in Complex Fault Block Oilfield and Its Development Model
Improving the oil production from nonmain oil layers is crucial for the complex fault block oilfields during the late stage of high water cut development to ensure stable production and capacity expansion. However, the developing characterization of the nonmain layers and their remaining oil distribution is still inadequate. Developing an efficient mode of development remains a challenge. This paper presents a detailed characterization of the sedimentary microfacies and architecture of a nonmain reservoir based on core and logging data analysis. A flexible injection-production development strategy model was designed and applied in the Hetan oilfield, located in the southeast of Zhanhua Depression of Bohai Bay Basin as an example. The results show that the nonmain oil layer of the Hetan oilfield is composed of estuary bar microfacies sand bodies. Deposits of various shapes are formed on the side or in front of the main body of the estuary dam, which constitutes the nonmain oil reservoir. The lithology is fine, the sand body thickness is small, and the plane heterogeneity is strong. The distribution is banded, potato-shaped, and fragmented. The nonmain oil layer has a small oil-bearing area of 0.1-1.0 km2 and a high oil saturation of over 58%. The Hetan oilfield has a significant amount of remaining oil enrichment and considerable potential for production digging. To optimize production, a flexible injection and production adjustment scheme is proposed, which includes designing multitarget horizontal wells and utilizing various methods such as optimizing well spacing, coupled injection, and cycle injection. Field tests conducted in the area have shown an increase in the recovery factor of nonmain oil layers from 16.7% to 28.5%. This indicates that identifying and characterizing nonmain oil layers through detailed analysis of sedimentary microfacies and reservoir architecture is useful in the late-stage development of complex fault block reservoirs to maintain sustainable and efficient oilfield development.
期刊介绍:
Geofluids is a peer-reviewed, Open Access journal that provides a forum for original research and reviews relating to the role of fluids in mineralogical, chemical, and structural evolution of the Earth’s crust. Its explicit aim is to disseminate ideas across the range of sub-disciplines in which Geofluids research is carried out. To this end, authors are encouraged to stress the transdisciplinary relevance and international ramifications of their research. Authors are also encouraged to make their work as accessible as possible to readers from other sub-disciplines.
Geofluids emphasizes chemical, microbial, and physical aspects of subsurface fluids throughout the Earth’s crust. Geofluids spans studies of groundwater, terrestrial or submarine geothermal fluids, basinal brines, petroleum, metamorphic waters or magmatic fluids.