MiR-378 通过靶向 AKT2 抑制血管紧张素 II 诱导的心肌细胞肥大

IF 1.2 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Guili Wang, Linlin Feng, Chunxiang Liu, Zongqiang Han, Xia Chen
{"title":"MiR-378 通过靶向 AKT2 抑制血管紧张素 II 诱导的心肌细胞肥大","authors":"Guili Wang, Linlin Feng, Chunxiang Liu, Zongqiang Han, Xia Chen","doi":"10.1536/ihj.23-485","DOIUrl":null,"url":null,"abstract":"</p><p>Cardiomyocyte hypertrophy plays a crucial role in heart failure development, potentially leading to sudden cardiac arrest and death. Previous studies suggest that micro-ribonucleic acids (miRNAs) show promise for the early diagnosis and treatment of cardiomyocyte hypertrophy.</p><p>To investigate the miR-378 expression in the cardiomyocyte hypertrophy model, reverse transcription-polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence tests were conducted in angiotensin II (Ang II)-induced H9c2 cells and Ang II-induced mouse model of cardiomyocyte hypertrophy. The functional interaction between miR-378 and AKT2 was studied by dual-luciferase reporter, RNA pull-down, Western blot, and RT-qPCR assays.</p><p>The results of RT-qPCR analysis showed the downregulated expression of miR-378 in both the cell and animal models of cardiomyocyte hypertrophy. It was observed that the introduction of the miR-378 mimic inhibited the hypertrophy of cardiomyocytes induced by Ang II. Furthermore, the co-transfection of AKT2 expression vector partially mitigated the negative impact of miR-378 overexpression on Ang II-induced cardiomyocytes. Molecular investigations provided evidence that miR-378 negatively regulated AKT2 expression by interacting with the 3' untranslated region (UTR) of AKT2 mRNA.</p><p>Decreased miR-378 expression and AKT2 activation are linked to Ang II-induced cardiomyocyte hypertrophy. Targeting miR-378/AKT2 axis offers therapeutic opportunity to alleviate cardiomyocyte hypertrophy.</p>\n<p></p>","PeriodicalId":13711,"journal":{"name":"International heart journal","volume":"99 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MiR-378 Inhibits Angiotensin II-Induced Cardiomyocyte Hypertrophy by Targeting AKT2\",\"authors\":\"Guili Wang, Linlin Feng, Chunxiang Liu, Zongqiang Han, Xia Chen\",\"doi\":\"10.1536/ihj.23-485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>Cardiomyocyte hypertrophy plays a crucial role in heart failure development, potentially leading to sudden cardiac arrest and death. Previous studies suggest that micro-ribonucleic acids (miRNAs) show promise for the early diagnosis and treatment of cardiomyocyte hypertrophy.</p><p>To investigate the miR-378 expression in the cardiomyocyte hypertrophy model, reverse transcription-polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence tests were conducted in angiotensin II (Ang II)-induced H9c2 cells and Ang II-induced mouse model of cardiomyocyte hypertrophy. The functional interaction between miR-378 and AKT2 was studied by dual-luciferase reporter, RNA pull-down, Western blot, and RT-qPCR assays.</p><p>The results of RT-qPCR analysis showed the downregulated expression of miR-378 in both the cell and animal models of cardiomyocyte hypertrophy. It was observed that the introduction of the miR-378 mimic inhibited the hypertrophy of cardiomyocytes induced by Ang II. Furthermore, the co-transfection of AKT2 expression vector partially mitigated the negative impact of miR-378 overexpression on Ang II-induced cardiomyocytes. Molecular investigations provided evidence that miR-378 negatively regulated AKT2 expression by interacting with the 3' untranslated region (UTR) of AKT2 mRNA.</p><p>Decreased miR-378 expression and AKT2 activation are linked to Ang II-induced cardiomyocyte hypertrophy. Targeting miR-378/AKT2 axis offers therapeutic opportunity to alleviate cardiomyocyte hypertrophy.</p>\\n<p></p>\",\"PeriodicalId\":13711,\"journal\":{\"name\":\"International heart journal\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International heart journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1536/ihj.23-485\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International heart journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1536/ihj.23-485","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

心肌细胞肥大在心力衰竭的发展过程中起着至关重要的作用,有可能导致心脏骤停和死亡。为了研究 miR-378 在心肌细胞肥大模型中的表达,研究人员在血管紧张素 II(Ang II)诱导的 H9c2 细胞和 Ang II 诱导的小鼠心肌细胞肥大模型中进行了反转录聚合酶链反应(RT-qPCR)、Western 印迹和免疫荧光检测。RT-qPCR分析结果表明,miR-378在心肌细胞肥大的细胞和动物模型中均表达下调。据观察,引入 miR-378 模拟物能抑制 Ang II 诱导的心肌细胞肥大。此外,联合转染 AKT2 表达载体可部分缓解 miR-378 过表达对 Ang II 诱导的心肌细胞的负面影响。分子研究证明,miR-378通过与AKT2 mRNA的3'非翻译区(UTR)相互作用,负向调节AKT2的表达。针对 miR-378/AKT2 轴提供了缓解心肌细胞肥大的治疗机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MiR-378 Inhibits Angiotensin II-Induced Cardiomyocyte Hypertrophy by Targeting AKT2

Cardiomyocyte hypertrophy plays a crucial role in heart failure development, potentially leading to sudden cardiac arrest and death. Previous studies suggest that micro-ribonucleic acids (miRNAs) show promise for the early diagnosis and treatment of cardiomyocyte hypertrophy.

To investigate the miR-378 expression in the cardiomyocyte hypertrophy model, reverse transcription-polymerase chain reaction (RT-qPCR), Western blot, and immunofluorescence tests were conducted in angiotensin II (Ang II)-induced H9c2 cells and Ang II-induced mouse model of cardiomyocyte hypertrophy. The functional interaction between miR-378 and AKT2 was studied by dual-luciferase reporter, RNA pull-down, Western blot, and RT-qPCR assays.

The results of RT-qPCR analysis showed the downregulated expression of miR-378 in both the cell and animal models of cardiomyocyte hypertrophy. It was observed that the introduction of the miR-378 mimic inhibited the hypertrophy of cardiomyocytes induced by Ang II. Furthermore, the co-transfection of AKT2 expression vector partially mitigated the negative impact of miR-378 overexpression on Ang II-induced cardiomyocytes. Molecular investigations provided evidence that miR-378 negatively regulated AKT2 expression by interacting with the 3' untranslated region (UTR) of AKT2 mRNA.

Decreased miR-378 expression and AKT2 activation are linked to Ang II-induced cardiomyocyte hypertrophy. Targeting miR-378/AKT2 axis offers therapeutic opportunity to alleviate cardiomyocyte hypertrophy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International heart journal
International heart journal 医学-心血管系统
CiteScore
2.50
自引率
6.70%
发文量
148
审稿时长
6-12 weeks
期刊介绍: Authors of research articles should disclose at the time of submission any financial arrangement they may have with a company whose product figures prominently in the submitted manuscript or with a company making a competing product. Such information will be held in confidence while the paper is under review and will not influence the editorial decision, but if the article is accepted for publication, the editors will usually discuss with the authors the manner in which such information is to be communicated to the reader.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信