利用机器学习加强对社会可取性偏见的检测:拟人指数的新应用

IF 2.1 3区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Sanaz Nazari, Walter L. Leite, A. Corinne Huggins-Manley
{"title":"利用机器学习加强对社会可取性偏见的检测:拟人指数的新应用","authors":"Sanaz Nazari, Walter L. Leite, A. Corinne Huggins-Manley","doi":"10.1177/00131644241255109","DOIUrl":null,"url":null,"abstract":"Social desirability bias (SDB) is a common threat to the validity of conclusions from responses to a scale or survey. There is a wide range of person-fit statistics in the literature that can be employed to detect SDB. In addition, machine learning classifiers, such as logistic regression and random forest, have the potential to distinguish between biased and unbiased responses. This study proposes a new application of these classifiers to detect SDB by considering several person-fit indices as features or predictors in the machine learning methods. The results of a Monte Carlo simulation study showed that for a single feature, applying person-fit indices directly and logistic regression led to similar classification results. However, the random forest classifier improved the classification of biased and unbiased responses substantially. Classification was improved in both logistic regression and random forest by considering multiple features simultaneously. Moreover, cross-validation indicated stable area under the curves (AUCs) across machine learning classifiers. A didactical illustration of applying random forest to detect SDB is presented.","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":"2018 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Detection of Social Desirability Bias Using Machine Learning: A Novel Application of Person-Fit Indices\",\"authors\":\"Sanaz Nazari, Walter L. Leite, A. Corinne Huggins-Manley\",\"doi\":\"10.1177/00131644241255109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social desirability bias (SDB) is a common threat to the validity of conclusions from responses to a scale or survey. There is a wide range of person-fit statistics in the literature that can be employed to detect SDB. In addition, machine learning classifiers, such as logistic regression and random forest, have the potential to distinguish between biased and unbiased responses. This study proposes a new application of these classifiers to detect SDB by considering several person-fit indices as features or predictors in the machine learning methods. The results of a Monte Carlo simulation study showed that for a single feature, applying person-fit indices directly and logistic regression led to similar classification results. However, the random forest classifier improved the classification of biased and unbiased responses substantially. Classification was improved in both logistic regression and random forest by considering multiple features simultaneously. Moreover, cross-validation indicated stable area under the curves (AUCs) across machine learning classifiers. A didactical illustration of applying random forest to detect SDB is presented.\",\"PeriodicalId\":11502,\"journal\":{\"name\":\"Educational and Psychological Measurement\",\"volume\":\"2018 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Educational and Psychological Measurement\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/00131644241255109\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644241255109","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

社会可取性偏差(SDB)是一种常见的威胁,会影响从量表或调查中得出的结论的有效性。文献中有多种拟人统计方法可用于检测 SDB。此外,机器学习分类器(如逻辑回归和随机森林)也有可能区分有偏见和无偏见的回答。本研究提出了将这些分类器应用于检测 SDB 的新方法,即在机器学习方法中考虑几个人称拟合指数作为特征或预测因子。蒙特卡罗模拟研究结果表明,对于单一特征,直接应用人称拟合指数和逻辑回归的分类结果相似。不过,随机森林分类器大大提高了有偏差和无偏差响应的分类效果。通过同时考虑多个特征,逻辑回归和随机森林分类器的分类效果都得到了改善。此外,交叉验证表明,各种机器学习分类器的曲线下面积(AUC)都很稳定。本文介绍了应用随机森林检测 SDB 的教学示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing the Detection of Social Desirability Bias Using Machine Learning: A Novel Application of Person-Fit Indices
Social desirability bias (SDB) is a common threat to the validity of conclusions from responses to a scale or survey. There is a wide range of person-fit statistics in the literature that can be employed to detect SDB. In addition, machine learning classifiers, such as logistic regression and random forest, have the potential to distinguish between biased and unbiased responses. This study proposes a new application of these classifiers to detect SDB by considering several person-fit indices as features or predictors in the machine learning methods. The results of a Monte Carlo simulation study showed that for a single feature, applying person-fit indices directly and logistic regression led to similar classification results. However, the random forest classifier improved the classification of biased and unbiased responses substantially. Classification was improved in both logistic regression and random forest by considering multiple features simultaneously. Moreover, cross-validation indicated stable area under the curves (AUCs) across machine learning classifiers. A didactical illustration of applying random forest to detect SDB is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Educational and Psychological Measurement
Educational and Psychological Measurement 医学-数学跨学科应用
CiteScore
5.50
自引率
7.40%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信