{"title":"三种长期旱地耕作序列的碳足迹和碳平衡","authors":"Upendra M. Sainju, Brett L. Allen","doi":"10.1002/saj2.20703","DOIUrl":null,"url":null,"abstract":"<p>Carbon footprints from plants, soil, and the environment are needed to evaluate C balance of an agroecosystem, which indicates if a system is a C source or sink for mitigating climate change. There is scarce information about C footprint and C balance in dryland agroecosystems. We measured C storage of above- and belowground crop biomass, CO<sub>2</sub> fluxes, soil C sequestration rates, and C balances of three long-term (34-year-old) dryland cropping sequences from 2016 to 2018 in the US northern Great Plains. Cropping sequences were no-till continuous spring wheat (NTCW; <i>Triticum aestivum</i> L.), no-till spring wheat–pea (NTWP; <i>Pisum sativum</i> L.), and conventional till spring wheat–fallow (CTWF). Carbon storage in grain, straw, root, and rhizodeposit were 29%–61% greater for NTCW and NTWP than CTWF. The CO<sub>2</sub> flux peaked immediately after tillage, planting, fertilization, and intense precipitation (>10 mm) for 3 months in 2016–2017. Cumulative annual CO<sub>2</sub> flux was 8%–37% greater for NTCW than NTWP and CTWF in 2016–2017, but was not different among cropping sequences in 2017–2018. Soil C sequestration rate at 0–10 cm measured from 2012 to 2019 was in the order: NTCW (0.27 Mg C ha<sup>−1</sup> year<sup>−1</sup>) > NTWP > CTWF (−0.23 Mg C ha<sup>−1</sup> year<sup>−1</sup>). Carbon balance remained negative and was not significantly different among cropping sequences but varied by year. Carbon loss increased with increased precipitation, regardless of cropping systems. Although a C source, the legume–nonlegume rotation can reduce C loss due to greater grain C output than other cropping sequences in the semiarid region of the northern Great Plains.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"88 4","pages":"1405-1418"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/saj2.20703","citationCount":"0","resultStr":"{\"title\":\"Carbon footprint and carbon balance of three long-term dryland cropping sequences\",\"authors\":\"Upendra M. Sainju, Brett L. Allen\",\"doi\":\"10.1002/saj2.20703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbon footprints from plants, soil, and the environment are needed to evaluate C balance of an agroecosystem, which indicates if a system is a C source or sink for mitigating climate change. There is scarce information about C footprint and C balance in dryland agroecosystems. We measured C storage of above- and belowground crop biomass, CO<sub>2</sub> fluxes, soil C sequestration rates, and C balances of three long-term (34-year-old) dryland cropping sequences from 2016 to 2018 in the US northern Great Plains. Cropping sequences were no-till continuous spring wheat (NTCW; <i>Triticum aestivum</i> L.), no-till spring wheat–pea (NTWP; <i>Pisum sativum</i> L.), and conventional till spring wheat–fallow (CTWF). Carbon storage in grain, straw, root, and rhizodeposit were 29%–61% greater for NTCW and NTWP than CTWF. The CO<sub>2</sub> flux peaked immediately after tillage, planting, fertilization, and intense precipitation (>10 mm) for 3 months in 2016–2017. Cumulative annual CO<sub>2</sub> flux was 8%–37% greater for NTCW than NTWP and CTWF in 2016–2017, but was not different among cropping sequences in 2017–2018. Soil C sequestration rate at 0–10 cm measured from 2012 to 2019 was in the order: NTCW (0.27 Mg C ha<sup>−1</sup> year<sup>−1</sup>) > NTWP > CTWF (−0.23 Mg C ha<sup>−1</sup> year<sup>−1</sup>). Carbon balance remained negative and was not significantly different among cropping sequences but varied by year. Carbon loss increased with increased precipitation, regardless of cropping systems. Although a C source, the legume–nonlegume rotation can reduce C loss due to greater grain C output than other cropping sequences in the semiarid region of the northern Great Plains.</p>\",\"PeriodicalId\":101043,\"journal\":{\"name\":\"Proceedings - Soil Science Society of America\",\"volume\":\"88 4\",\"pages\":\"1405-1418\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/saj2.20703\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings - Soil Science Society of America\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/saj2.20703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings - Soil Science Society of America","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/saj2.20703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Carbon footprint and carbon balance of three long-term dryland cropping sequences
Carbon footprints from plants, soil, and the environment are needed to evaluate C balance of an agroecosystem, which indicates if a system is a C source or sink for mitigating climate change. There is scarce information about C footprint and C balance in dryland agroecosystems. We measured C storage of above- and belowground crop biomass, CO2 fluxes, soil C sequestration rates, and C balances of three long-term (34-year-old) dryland cropping sequences from 2016 to 2018 in the US northern Great Plains. Cropping sequences were no-till continuous spring wheat (NTCW; Triticum aestivum L.), no-till spring wheat–pea (NTWP; Pisum sativum L.), and conventional till spring wheat–fallow (CTWF). Carbon storage in grain, straw, root, and rhizodeposit were 29%–61% greater for NTCW and NTWP than CTWF. The CO2 flux peaked immediately after tillage, planting, fertilization, and intense precipitation (>10 mm) for 3 months in 2016–2017. Cumulative annual CO2 flux was 8%–37% greater for NTCW than NTWP and CTWF in 2016–2017, but was not different among cropping sequences in 2017–2018. Soil C sequestration rate at 0–10 cm measured from 2012 to 2019 was in the order: NTCW (0.27 Mg C ha−1 year−1) > NTWP > CTWF (−0.23 Mg C ha−1 year−1). Carbon balance remained negative and was not significantly different among cropping sequences but varied by year. Carbon loss increased with increased precipitation, regardless of cropping systems. Although a C source, the legume–nonlegume rotation can reduce C loss due to greater grain C output than other cropping sequences in the semiarid region of the northern Great Plains.