基于多时间尺度变分模式分解的多噪声下铁路点机械鲁棒故障诊断

IF 1.6 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Junqi Liu;Tao Wen;Guo Xie;Yuan Cao;Clive Roberts
{"title":"基于多时间尺度变分模式分解的多噪声下铁路点机械鲁棒故障诊断","authors":"Junqi Liu;Tao Wen;Guo Xie;Yuan Cao;Clive Roberts","doi":"10.23919/cje.2022.00.234","DOIUrl":null,"url":null,"abstract":"The fault diagnosis of railway point machines (RPMs) has attracted the attention of engineers and researchers. Seldom have studies considered diverse noises along the track. To fulfill this aspect, a multi-time-scale variational mode decomposition (MTSVMD) is proposed in this paper to realize the accurate and robust fault diagnosis of RPMs under multiple noises. MTSVMD decomposes condition monitoring signals after coarse-grained processing in varying degrees. In this manner, the information contained in the signal components at multiple time scales can construct a more abundant feature space than at a single scale. In the experimental validation, a random position, random type, random number, and random length (4R) noise-adding algorithm helps to verify the robustness of the approach. The adequate experimental results demonstrate the superiority of the proposed MTSVMD-based fault diagnosis.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"33 3","pages":"814-822"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543239","citationCount":"0","resultStr":"{\"title\":\"Multi-Time-Scale Variational Mode Decomposition-Based Robust Fault Diagnosis of Railway Point Machines Under Multiple Noises\",\"authors\":\"Junqi Liu;Tao Wen;Guo Xie;Yuan Cao;Clive Roberts\",\"doi\":\"10.23919/cje.2022.00.234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fault diagnosis of railway point machines (RPMs) has attracted the attention of engineers and researchers. Seldom have studies considered diverse noises along the track. To fulfill this aspect, a multi-time-scale variational mode decomposition (MTSVMD) is proposed in this paper to realize the accurate and robust fault diagnosis of RPMs under multiple noises. MTSVMD decomposes condition monitoring signals after coarse-grained processing in varying degrees. In this manner, the information contained in the signal components at multiple time scales can construct a more abundant feature space than at a single scale. In the experimental validation, a random position, random type, random number, and random length (4R) noise-adding algorithm helps to verify the robustness of the approach. The adequate experimental results demonstrate the superiority of the proposed MTSVMD-based fault diagnosis.\",\"PeriodicalId\":50701,\"journal\":{\"name\":\"Chinese Journal of Electronics\",\"volume\":\"33 3\",\"pages\":\"814-822\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543239\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10543239/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10543239/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

铁路点机械(RPM)的故障诊断引起了工程师和研究人员的关注。研究很少考虑轨道沿线的各种噪声。为此,本文提出了一种多时间尺度变分模式分解(MTSVMD),以实现多噪声条件下 RPM 的精确和鲁棒故障诊断。MTSVMD 对经过粗粒度处理的状态监测信号进行不同程度的分解。这样,多个时间尺度上的信号分量所包含的信息可以构建一个比单一尺度上更丰富的特征空间。在实验验证中,随机位置、随机类型、随机数和随机长度(4R)噪声添加算法有助于验证该方法的鲁棒性。充分的实验结果证明了所提出的基于 MTSVMD 的故障诊断方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Time-Scale Variational Mode Decomposition-Based Robust Fault Diagnosis of Railway Point Machines Under Multiple Noises
The fault diagnosis of railway point machines (RPMs) has attracted the attention of engineers and researchers. Seldom have studies considered diverse noises along the track. To fulfill this aspect, a multi-time-scale variational mode decomposition (MTSVMD) is proposed in this paper to realize the accurate and robust fault diagnosis of RPMs under multiple noises. MTSVMD decomposes condition monitoring signals after coarse-grained processing in varying degrees. In this manner, the information contained in the signal components at multiple time scales can construct a more abundant feature space than at a single scale. In the experimental validation, a random position, random type, random number, and random length (4R) noise-adding algorithm helps to verify the robustness of the approach. The adequate experimental results demonstrate the superiority of the proposed MTSVMD-based fault diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Electronics
Chinese Journal of Electronics 工程技术-工程:电子与电气
CiteScore
3.70
自引率
16.70%
发文量
342
审稿时长
12.0 months
期刊介绍: CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信