{"title":"从电子病历大数据中提取综合特征,用于死亡率和表型预测","authors":"Fei Li;Yiqiang Chen;Yang Gu;Yaowei Wang","doi":"10.23919/cje.2023.00.181","DOIUrl":null,"url":null,"abstract":"The key to synthesizing the features of electronic medical records (EMR) big data and using them for specific medical purposes, such as mortality and phenotype prediction, is to integrate the individual medical event and the overall multivariate time series feature extraction automatically, as well as to alleviate data imbalance problems. This paper provides a general feature extraction method to reduce manual intervention and automatically process large-scale data. The processing uses two variational auto-encoders (VAEs) to automatically extract individual and global features. It avoids the well-known posterior collapse problem of Transformer VAE through a uniquely designed “proportional and stabilizing” mechanism and forms a unique means to alleviate the data imbalance problem. We conducted experiments using ICU-STAY patients' data from the MIMIC-III database and compared them with the mainstream EMR time series processing methods. The results show that the method extracts visible and comprehensive features, alleviates data imbalance problems and improves the accuracy in specific predicting tasks.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"33 3","pages":"776-792"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543236","citationCount":"0","resultStr":"{\"title\":\"Extracting Integrated Features of Electronic Medical Records Big Data for Mortality and Phenotype Prediction\",\"authors\":\"Fei Li;Yiqiang Chen;Yang Gu;Yaowei Wang\",\"doi\":\"10.23919/cje.2023.00.181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The key to synthesizing the features of electronic medical records (EMR) big data and using them for specific medical purposes, such as mortality and phenotype prediction, is to integrate the individual medical event and the overall multivariate time series feature extraction automatically, as well as to alleviate data imbalance problems. This paper provides a general feature extraction method to reduce manual intervention and automatically process large-scale data. The processing uses two variational auto-encoders (VAEs) to automatically extract individual and global features. It avoids the well-known posterior collapse problem of Transformer VAE through a uniquely designed “proportional and stabilizing” mechanism and forms a unique means to alleviate the data imbalance problem. We conducted experiments using ICU-STAY patients' data from the MIMIC-III database and compared them with the mainstream EMR time series processing methods. The results show that the method extracts visible and comprehensive features, alleviates data imbalance problems and improves the accuracy in specific predicting tasks.\",\"PeriodicalId\":50701,\"journal\":{\"name\":\"Chinese Journal of Electronics\",\"volume\":\"33 3\",\"pages\":\"776-792\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543236\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10543236/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10543236/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Extracting Integrated Features of Electronic Medical Records Big Data for Mortality and Phenotype Prediction
The key to synthesizing the features of electronic medical records (EMR) big data and using them for specific medical purposes, such as mortality and phenotype prediction, is to integrate the individual medical event and the overall multivariate time series feature extraction automatically, as well as to alleviate data imbalance problems. This paper provides a general feature extraction method to reduce manual intervention and automatically process large-scale data. The processing uses two variational auto-encoders (VAEs) to automatically extract individual and global features. It avoids the well-known posterior collapse problem of Transformer VAE through a uniquely designed “proportional and stabilizing” mechanism and forms a unique means to alleviate the data imbalance problem. We conducted experiments using ICU-STAY patients' data from the MIMIC-III database and compared them with the mainstream EMR time series processing methods. The results show that the method extracts visible and comprehensive features, alleviates data imbalance problems and improves the accuracy in specific predicting tasks.
期刊介绍:
CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.