Ling Liu;Maoxiang Chu;Rongfen Gong;Liming Liu;Yonghui Yang
{"title":"用于模式分类的加权线性损耗大边际分布机","authors":"Ling Liu;Maoxiang Chu;Rongfen Gong;Liming Liu;Yonghui Yang","doi":"10.23919/cje.2022.00.156","DOIUrl":null,"url":null,"abstract":"Compared with support vector machine, large margin distribution machine (LDM) has better generalization performance. The central idea of LDM is to maximize the margin mean and minimize the margin variance simultaneously. But the computational complexity of LDM is high. In order to reduce the computational complexity of LDM, a weighted linear loss LDM (WLLDM) is proposed. The framework of WLLDM is built based on LDM and the weighted linear loss. The weighted linear loss is adopted instead of the hinge loss in WLLDM. This modification can transform the quadratic programming problem into a simple linear equation, resulting in lower computational complexity. Thus, WLLDM has the potential to deal with large-scale datasets. The WLLDM is similar in principle to the LDM algorithm, which can optimize the margin distribution and achieve better generalization performance. The WLLDM algorithm is compared with other models by conducting experiments on different datasets. The experimental results show that the proposed WLLDM has better generalization performance and faster training speed.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"33 3","pages":"753-765"},"PeriodicalIF":1.6000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543193","citationCount":"0","resultStr":"{\"title\":\"Weighted Linear Loss Large Margin Distribution Machine for Pattern Classification\",\"authors\":\"Ling Liu;Maoxiang Chu;Rongfen Gong;Liming Liu;Yonghui Yang\",\"doi\":\"10.23919/cje.2022.00.156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared with support vector machine, large margin distribution machine (LDM) has better generalization performance. The central idea of LDM is to maximize the margin mean and minimize the margin variance simultaneously. But the computational complexity of LDM is high. In order to reduce the computational complexity of LDM, a weighted linear loss LDM (WLLDM) is proposed. The framework of WLLDM is built based on LDM and the weighted linear loss. The weighted linear loss is adopted instead of the hinge loss in WLLDM. This modification can transform the quadratic programming problem into a simple linear equation, resulting in lower computational complexity. Thus, WLLDM has the potential to deal with large-scale datasets. The WLLDM is similar in principle to the LDM algorithm, which can optimize the margin distribution and achieve better generalization performance. The WLLDM algorithm is compared with other models by conducting experiments on different datasets. The experimental results show that the proposed WLLDM has better generalization performance and faster training speed.\",\"PeriodicalId\":50701,\"journal\":{\"name\":\"Chinese Journal of Electronics\",\"volume\":\"33 3\",\"pages\":\"753-765\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543193\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10543193/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10543193/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Weighted Linear Loss Large Margin Distribution Machine for Pattern Classification
Compared with support vector machine, large margin distribution machine (LDM) has better generalization performance. The central idea of LDM is to maximize the margin mean and minimize the margin variance simultaneously. But the computational complexity of LDM is high. In order to reduce the computational complexity of LDM, a weighted linear loss LDM (WLLDM) is proposed. The framework of WLLDM is built based on LDM and the weighted linear loss. The weighted linear loss is adopted instead of the hinge loss in WLLDM. This modification can transform the quadratic programming problem into a simple linear equation, resulting in lower computational complexity. Thus, WLLDM has the potential to deal with large-scale datasets. The WLLDM is similar in principle to the LDM algorithm, which can optimize the margin distribution and achieve better generalization performance. The WLLDM algorithm is compared with other models by conducting experiments on different datasets. The experimental results show that the proposed WLLDM has better generalization performance and faster training speed.
期刊介绍:
CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.