Sebastián Bermúdez-Puga , Meriellen Dias , Iara Lima Reis , Taciana Freire de Oliveira , Sonia Regina Yokomizo de Almeida , Maria Anita Mendes , Simon J. Moore , José R. Almeida , Carolina Proaño-Bolaños , Ricardo Pinheiro de Souza Oliveira
{"title":"对天然和工程克鲁斯肽抗李斯特菌活性的显微和代谢组学分析。","authors":"Sebastián Bermúdez-Puga , Meriellen Dias , Iara Lima Reis , Taciana Freire de Oliveira , Sonia Regina Yokomizo de Almeida , Maria Anita Mendes , Simon J. Moore , José R. Almeida , Carolina Proaño-Bolaños , Ricardo Pinheiro de Souza Oliveira","doi":"10.1016/j.biochi.2024.05.022","DOIUrl":null,"url":null,"abstract":"<div><p><em>Listeria monocytogenes</em> is a human opportunistic foodborne pathogen that produces life-threatening infections with a high mortality rate. The control of Listeria in the food production environment and effective clinical management of human listeriosis are challenging due to the emergence of antibiotic resistance. Hence we evaluate the <em>in vitro</em> anti-Listeria activity of two synthetic cruzioseptins reproducing their natural sequences CZS-9, and CZS-12, and one engineered sequence based on CZS-1, named [K4K15]CZS-1. The assessment of the <em>in vitro</em> potential of cruzioseptins, highlighted the promising antibacterial effect of [K4K15]CZS-1 in very low concentrations (0.91 μM) and its thermal stability at high-temperature conditions, is compatible with the food industry. Microscopic and metabolomic analyses suggest cruzioseptin induces anti-<em>Listeria</em> bioactivity through membrane disruption and changes in the intracellular metabolome. We also report that [K4K15]CZS-1 is not resistant to peptidases/proteases emphasizing a key advantage for their use as a food preservative. However, there is a need for further structural and functional optimisations for the potential clinical application as an antibiotic. In conclusion, [K4K15]CZS-1 stand out as membrane-active peptides with the ability to induce shifts in the bacteria metabolome and inspire the development of strategies for the prevention of <em>L. monocytogenes</em> emergence and dissemination.</p></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"225 ","pages":"Pages 168-175"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscopic and metabolomics analysis of the anti-Listeria activity of natural and engineered cruzioseptins\",\"authors\":\"Sebastián Bermúdez-Puga , Meriellen Dias , Iara Lima Reis , Taciana Freire de Oliveira , Sonia Regina Yokomizo de Almeida , Maria Anita Mendes , Simon J. Moore , José R. Almeida , Carolina Proaño-Bolaños , Ricardo Pinheiro de Souza Oliveira\",\"doi\":\"10.1016/j.biochi.2024.05.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Listeria monocytogenes</em> is a human opportunistic foodborne pathogen that produces life-threatening infections with a high mortality rate. The control of Listeria in the food production environment and effective clinical management of human listeriosis are challenging due to the emergence of antibiotic resistance. Hence we evaluate the <em>in vitro</em> anti-Listeria activity of two synthetic cruzioseptins reproducing their natural sequences CZS-9, and CZS-12, and one engineered sequence based on CZS-1, named [K4K15]CZS-1. The assessment of the <em>in vitro</em> potential of cruzioseptins, highlighted the promising antibacterial effect of [K4K15]CZS-1 in very low concentrations (0.91 μM) and its thermal stability at high-temperature conditions, is compatible with the food industry. Microscopic and metabolomic analyses suggest cruzioseptin induces anti-<em>Listeria</em> bioactivity through membrane disruption and changes in the intracellular metabolome. We also report that [K4K15]CZS-1 is not resistant to peptidases/proteases emphasizing a key advantage for their use as a food preservative. However, there is a need for further structural and functional optimisations for the potential clinical application as an antibiotic. In conclusion, [K4K15]CZS-1 stand out as membrane-active peptides with the ability to induce shifts in the bacteria metabolome and inspire the development of strategies for the prevention of <em>L. monocytogenes</em> emergence and dissemination.</p></div>\",\"PeriodicalId\":251,\"journal\":{\"name\":\"Biochimie\",\"volume\":\"225 \",\"pages\":\"Pages 168-175\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimie\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030090842400124X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030090842400124X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Microscopic and metabolomics analysis of the anti-Listeria activity of natural and engineered cruzioseptins
Listeria monocytogenes is a human opportunistic foodborne pathogen that produces life-threatening infections with a high mortality rate. The control of Listeria in the food production environment and effective clinical management of human listeriosis are challenging due to the emergence of antibiotic resistance. Hence we evaluate the in vitro anti-Listeria activity of two synthetic cruzioseptins reproducing their natural sequences CZS-9, and CZS-12, and one engineered sequence based on CZS-1, named [K4K15]CZS-1. The assessment of the in vitro potential of cruzioseptins, highlighted the promising antibacterial effect of [K4K15]CZS-1 in very low concentrations (0.91 μM) and its thermal stability at high-temperature conditions, is compatible with the food industry. Microscopic and metabolomic analyses suggest cruzioseptin induces anti-Listeria bioactivity through membrane disruption and changes in the intracellular metabolome. We also report that [K4K15]CZS-1 is not resistant to peptidases/proteases emphasizing a key advantage for their use as a food preservative. However, there is a need for further structural and functional optimisations for the potential clinical application as an antibiotic. In conclusion, [K4K15]CZS-1 stand out as membrane-active peptides with the ability to induce shifts in the bacteria metabolome and inspire the development of strategies for the prevention of L. monocytogenes emergence and dissemination.
期刊介绍:
Biochimie publishes original research articles, short communications, review articles, graphical reviews, mini-reviews, and hypotheses in the broad areas of biology, including biochemistry, enzymology, molecular and cell biology, metabolic regulation, genetics, immunology, microbiology, structural biology, genomics, proteomics, and molecular mechanisms of disease. Biochimie publishes exclusively in English.
Articles are subject to peer review, and must satisfy the requirements of originality, high scientific integrity and general interest to a broad range of readers. Submissions that are judged to be of sound scientific and technical quality but do not fully satisfy the requirements for publication in Biochimie may benefit from a transfer service to a more suitable journal within the same subject area.