{"title":"基于三种机器学习方法的矿物质摄入量与血液中同型半胱氨酸水平之间的关系:一项大型横断面研究。","authors":"Jing Fan, Shaojie Liu, Lanxin Wei, Qi Zhao, Genming Zhao, Ruihua Dong, Bo Chen","doi":"10.1038/s41387-024-00293-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Blood homocysteine (Hcy) level has become a sensitive indicator in predicting the development of cardiovascular disease. Studies have shown an association between individual mineral intake and blood Hcy levels. The effect of mixed minerals' intake on blood Hcy levels is unknown.</p><p><strong>Methods: </strong>Data were obtained from the baseline survey data of the Shanghai Suburban Adult Cohort and Biobank(SSACB) in 2016. A total of 38273 participants aged 20-74 years met our inclusion and exclusion criteria. Food frequency questionnaire (FFQ) was used to calculate the intake of 10 minerals (calcium, potassium, magnesium, sodium, iron, zinc, selenium, phosphorus, copper and manganese). Measuring the concentration of Hcy in the morning fasting blood sample. Traditional regression models were used to assess the relationship between individual minerals' intake and blood Hcy levels. Three machine learning models (WQS, Qg-comp, and BKMR) were used to the relationship between mixed minerals' intake and blood Hcy levels, distinguishing the individual effects of each mineral and determining their respective weights in the joint effect.</p><p><strong>Results: </strong>Traditional regression model showed that higher intake of calcium, phosphorus, potassium, magnesium, iron, zinc, copper, and manganese was associated with lower blood Hcy levels. Both Qg-comp and BKMR results consistently indicate that higher intake of mixed minerals is associated with lower blood Hcy levels. Calcium exhibits the highest weight in the joint effect in the WQS model. In Qg-comp, iron has the highest positive weight, while manganese has the highest negative weight. The BKMR results of the subsample after 10,000 iterations showed that except for sodium, all nine minerals had the high weights in the joint effect on the effect of blood Hcy levels.</p><p><strong>Conclusion: </strong>Overall, higher mixed mineral's intake was associated with lower blood Hcy levels, and each mineral contributed differently to the joint effect. Future studies are available to further explore the mechanisms underlying this association, and the potential impact of mixed minerals' intake on other health indicators needs to be further investigated. These efforts will help provide additional insights to deepen our understanding of mixed minerals and their potential role in health maintenance.</p>","PeriodicalId":19339,"journal":{"name":"Nutrition & Diabetes","volume":"14 1","pages":"36"},"PeriodicalIF":4.6000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144190/pdf/","citationCount":"0","resultStr":"{\"title\":\"Relationships between minerals' intake and blood homocysteine levels based on three machine learning methods: a large cross-sectional study.\",\"authors\":\"Jing Fan, Shaojie Liu, Lanxin Wei, Qi Zhao, Genming Zhao, Ruihua Dong, Bo Chen\",\"doi\":\"10.1038/s41387-024-00293-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Blood homocysteine (Hcy) level has become a sensitive indicator in predicting the development of cardiovascular disease. Studies have shown an association between individual mineral intake and blood Hcy levels. The effect of mixed minerals' intake on blood Hcy levels is unknown.</p><p><strong>Methods: </strong>Data were obtained from the baseline survey data of the Shanghai Suburban Adult Cohort and Biobank(SSACB) in 2016. A total of 38273 participants aged 20-74 years met our inclusion and exclusion criteria. Food frequency questionnaire (FFQ) was used to calculate the intake of 10 minerals (calcium, potassium, magnesium, sodium, iron, zinc, selenium, phosphorus, copper and manganese). Measuring the concentration of Hcy in the morning fasting blood sample. Traditional regression models were used to assess the relationship between individual minerals' intake and blood Hcy levels. Three machine learning models (WQS, Qg-comp, and BKMR) were used to the relationship between mixed minerals' intake and blood Hcy levels, distinguishing the individual effects of each mineral and determining their respective weights in the joint effect.</p><p><strong>Results: </strong>Traditional regression model showed that higher intake of calcium, phosphorus, potassium, magnesium, iron, zinc, copper, and manganese was associated with lower blood Hcy levels. Both Qg-comp and BKMR results consistently indicate that higher intake of mixed minerals is associated with lower blood Hcy levels. Calcium exhibits the highest weight in the joint effect in the WQS model. In Qg-comp, iron has the highest positive weight, while manganese has the highest negative weight. The BKMR results of the subsample after 10,000 iterations showed that except for sodium, all nine minerals had the high weights in the joint effect on the effect of blood Hcy levels.</p><p><strong>Conclusion: </strong>Overall, higher mixed mineral's intake was associated with lower blood Hcy levels, and each mineral contributed differently to the joint effect. Future studies are available to further explore the mechanisms underlying this association, and the potential impact of mixed minerals' intake on other health indicators needs to be further investigated. These efforts will help provide additional insights to deepen our understanding of mixed minerals and their potential role in health maintenance.</p>\",\"PeriodicalId\":19339,\"journal\":{\"name\":\"Nutrition & Diabetes\",\"volume\":\"14 1\",\"pages\":\"36\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11144190/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutrition & Diabetes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41387-024-00293-3\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition & Diabetes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41387-024-00293-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Relationships between minerals' intake and blood homocysteine levels based on three machine learning methods: a large cross-sectional study.
Background: Blood homocysteine (Hcy) level has become a sensitive indicator in predicting the development of cardiovascular disease. Studies have shown an association between individual mineral intake and blood Hcy levels. The effect of mixed minerals' intake on blood Hcy levels is unknown.
Methods: Data were obtained from the baseline survey data of the Shanghai Suburban Adult Cohort and Biobank(SSACB) in 2016. A total of 38273 participants aged 20-74 years met our inclusion and exclusion criteria. Food frequency questionnaire (FFQ) was used to calculate the intake of 10 minerals (calcium, potassium, magnesium, sodium, iron, zinc, selenium, phosphorus, copper and manganese). Measuring the concentration of Hcy in the morning fasting blood sample. Traditional regression models were used to assess the relationship between individual minerals' intake and blood Hcy levels. Three machine learning models (WQS, Qg-comp, and BKMR) were used to the relationship between mixed minerals' intake and blood Hcy levels, distinguishing the individual effects of each mineral and determining their respective weights in the joint effect.
Results: Traditional regression model showed that higher intake of calcium, phosphorus, potassium, magnesium, iron, zinc, copper, and manganese was associated with lower blood Hcy levels. Both Qg-comp and BKMR results consistently indicate that higher intake of mixed minerals is associated with lower blood Hcy levels. Calcium exhibits the highest weight in the joint effect in the WQS model. In Qg-comp, iron has the highest positive weight, while manganese has the highest negative weight. The BKMR results of the subsample after 10,000 iterations showed that except for sodium, all nine minerals had the high weights in the joint effect on the effect of blood Hcy levels.
Conclusion: Overall, higher mixed mineral's intake was associated with lower blood Hcy levels, and each mineral contributed differently to the joint effect. Future studies are available to further explore the mechanisms underlying this association, and the potential impact of mixed minerals' intake on other health indicators needs to be further investigated. These efforts will help provide additional insights to deepen our understanding of mixed minerals and their potential role in health maintenance.
期刊介绍:
Nutrition & Diabetes is a peer-reviewed, online, open access journal bringing to the fore outstanding research in the areas of nutrition and chronic disease, including diabetes, from the molecular to the population level.