操作电子顺磁共振波谱学的最新发展。

IF 1.1 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY
Chimia Pub Date : 2024-05-29 DOI:10.2533/chimia.2024.326
Jörg Fischer, Mikhail Agrachev, Jörg Forrer, Rene Tschaggelar, Oliver Oberhänsli, Gunnar Jeschke
{"title":"操作电子顺磁共振波谱学的最新发展。","authors":"Jörg Fischer, Mikhail Agrachev, Jörg Forrer, Rene Tschaggelar, Oliver Oberhänsli, Gunnar Jeschke","doi":"10.2533/chimia.2024.326","DOIUrl":null,"url":null,"abstract":"<p><p>Electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for in situ/operando tracking of catalytic reactions that involve paramagnetic species either as a catalyst (e.g. transition metal ions or defects), reaction intermediates (radicals) or poisoning agents such as coke. This article provides a summary of recent experimental examples and developments in resonator design as well as detection schemes that were carried out in our group. Opportunities for applying this technique are illustrated by examples, including studies of transition metal exchanged zeolites and metal-free zeolites as well as metal oxide catalysts. The inherent limitations of EPR applied at high temperatures are discussed, as well as strategies in reducing or lifting these restrictions are evaluated and ideas for future improvements and methodologies are discussed.</p>","PeriodicalId":9957,"journal":{"name":"Chimia","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Current Developments in Operando Electron Paramagnetic Resonance Spectroscopy.\",\"authors\":\"Jörg Fischer, Mikhail Agrachev, Jörg Forrer, Rene Tschaggelar, Oliver Oberhänsli, Gunnar Jeschke\",\"doi\":\"10.2533/chimia.2024.326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for in situ/operando tracking of catalytic reactions that involve paramagnetic species either as a catalyst (e.g. transition metal ions or defects), reaction intermediates (radicals) or poisoning agents such as coke. This article provides a summary of recent experimental examples and developments in resonator design as well as detection schemes that were carried out in our group. Opportunities for applying this technique are illustrated by examples, including studies of transition metal exchanged zeolites and metal-free zeolites as well as metal oxide catalysts. The inherent limitations of EPR applied at high temperatures are discussed, as well as strategies in reducing or lifting these restrictions are evaluated and ideas for future improvements and methodologies are discussed.</p>\",\"PeriodicalId\":9957,\"journal\":{\"name\":\"Chimia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chimia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2533/chimia.2024.326\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chimia","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2533/chimia.2024.326","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电子顺磁共振 (EPR) 光谱是一种强大的工具,可用于原位/操作跟踪涉及顺磁物种的催化反应,这些顺磁物种可以是催化剂(如过渡金属离子或缺陷)、反应中间体(自由基)或中毒剂(如焦炭)。本文概述了我们小组最近在谐振器设计和检测方案方面的实验实例和发展情况。举例说明了这一技术的应用机会,包括对过渡金属交换沸石和无金属沸石以及金属氧化物催化剂的研究。讨论了在高温下应用 EPR 的固有限制,评估了减少或解除这些限制的策略,并讨论了未来的改进思路和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Current Developments in Operando Electron Paramagnetic Resonance Spectroscopy.

Electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for in situ/operando tracking of catalytic reactions that involve paramagnetic species either as a catalyst (e.g. transition metal ions or defects), reaction intermediates (radicals) or poisoning agents such as coke. This article provides a summary of recent experimental examples and developments in resonator design as well as detection schemes that were carried out in our group. Opportunities for applying this technique are illustrated by examples, including studies of transition metal exchanged zeolites and metal-free zeolites as well as metal oxide catalysts. The inherent limitations of EPR applied at high temperatures are discussed, as well as strategies in reducing or lifting these restrictions are evaluated and ideas for future improvements and methodologies are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chimia
Chimia 化学-化学综合
CiteScore
1.60
自引率
0.00%
发文量
144
审稿时长
2 months
期刊介绍: CHIMIA, a scientific journal for chemistry in the broadest sense covers the interests of a wide and diverse readership. Contributions from all fields of chemistry and related areas are considered for publication in the form of Review Articles and Notes. A characteristic feature of CHIMIA are the thematic issues, each devoted to an area of great current significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信