{"title":"运动诱导的肌肉激素 \"鸢尾素 \"可控制牛促性腺激素分泌黄体生成素和卵泡刺激素。","authors":"Yvan Bienvenu Niyonzima, Denis Karani Wanjiru, Hiroya Kadokawa","doi":"10.1016/j.anireprosci.2024.107516","DOIUrl":null,"url":null,"abstract":"<div><p>Irisin is a hormone secreted by muscle in response to exercise. The irisin receptor (IrisinR) is a heterodimer of integrin alpha V (ITGAV) and integrin beta 5 (ITGB5) subunits. Since irisin may mediate some beneficial effects of exercise on animal reproduction, we tested the hypothesis that bovine gonadotrophs express IrisinR and irisin stimulates luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion by gonadotrophs. Reverse transcription polymerase chain reaction was used to detect the mRNA expression of both <em>ITGAV</em> and <em>ITGB5</em> in the anterior pituitary glands (APs) of post pubertal heifers and mouse gonadotroph cell line “LβT2.” Western blotting was used to detect protein expression in bovine APs. Immunofluorescence microscopy, utilizing the same antibody, visualized IrisinR on the plasma membrane of majority of gonadotrophs. We prepared AP cells from healthy postpubertal heifers, cultured them for 3.5 d, and treated them with increasing concentrations (0, 0.01, 0.1, 1, or 10 nM) of irisin for 5 min before either no treatment or gonadotropin-releasing hormone (GnRH) stimulation. After 2 h, media were harvested for LH and FSH assays. Irisin (0.1–10 nM) stimulated basal LH and FSH secretion, and these stimulatory effects were inhibited by the extracellular signal-regulated kinase or SMAD pathway inhibitors. In the presence of GnRH, irisin at 0.01–1 nM stimulated LH and FSH secretion. A higher dose of irisin (10 nM), however, suppressed the GnRH-induced LH and FSH levels. In conclusion, bovine gonadotrophs expressed IrisinR, and irisin controlled LH and FSH secretion from bovine gonadotrophs.</p></div>","PeriodicalId":7880,"journal":{"name":"Animal Reproduction Science","volume":"266 ","pages":"Article 107516"},"PeriodicalIF":2.2000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exercise-induced muscle hormone “irisin” controls luteinizing hormone and follicle-stimulating hormone secretion by bovine gonadotrophs\",\"authors\":\"Yvan Bienvenu Niyonzima, Denis Karani Wanjiru, Hiroya Kadokawa\",\"doi\":\"10.1016/j.anireprosci.2024.107516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Irisin is a hormone secreted by muscle in response to exercise. The irisin receptor (IrisinR) is a heterodimer of integrin alpha V (ITGAV) and integrin beta 5 (ITGB5) subunits. Since irisin may mediate some beneficial effects of exercise on animal reproduction, we tested the hypothesis that bovine gonadotrophs express IrisinR and irisin stimulates luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion by gonadotrophs. Reverse transcription polymerase chain reaction was used to detect the mRNA expression of both <em>ITGAV</em> and <em>ITGB5</em> in the anterior pituitary glands (APs) of post pubertal heifers and mouse gonadotroph cell line “LβT2.” Western blotting was used to detect protein expression in bovine APs. Immunofluorescence microscopy, utilizing the same antibody, visualized IrisinR on the plasma membrane of majority of gonadotrophs. We prepared AP cells from healthy postpubertal heifers, cultured them for 3.5 d, and treated them with increasing concentrations (0, 0.01, 0.1, 1, or 10 nM) of irisin for 5 min before either no treatment or gonadotropin-releasing hormone (GnRH) stimulation. After 2 h, media were harvested for LH and FSH assays. Irisin (0.1–10 nM) stimulated basal LH and FSH secretion, and these stimulatory effects were inhibited by the extracellular signal-regulated kinase or SMAD pathway inhibitors. In the presence of GnRH, irisin at 0.01–1 nM stimulated LH and FSH secretion. A higher dose of irisin (10 nM), however, suppressed the GnRH-induced LH and FSH levels. In conclusion, bovine gonadotrophs expressed IrisinR, and irisin controlled LH and FSH secretion from bovine gonadotrophs.</p></div>\",\"PeriodicalId\":7880,\"journal\":{\"name\":\"Animal Reproduction Science\",\"volume\":\"266 \",\"pages\":\"Article 107516\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Reproduction Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378432024001076\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Reproduction Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378432024001076","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Exercise-induced muscle hormone “irisin” controls luteinizing hormone and follicle-stimulating hormone secretion by bovine gonadotrophs
Irisin is a hormone secreted by muscle in response to exercise. The irisin receptor (IrisinR) is a heterodimer of integrin alpha V (ITGAV) and integrin beta 5 (ITGB5) subunits. Since irisin may mediate some beneficial effects of exercise on animal reproduction, we tested the hypothesis that bovine gonadotrophs express IrisinR and irisin stimulates luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion by gonadotrophs. Reverse transcription polymerase chain reaction was used to detect the mRNA expression of both ITGAV and ITGB5 in the anterior pituitary glands (APs) of post pubertal heifers and mouse gonadotroph cell line “LβT2.” Western blotting was used to detect protein expression in bovine APs. Immunofluorescence microscopy, utilizing the same antibody, visualized IrisinR on the plasma membrane of majority of gonadotrophs. We prepared AP cells from healthy postpubertal heifers, cultured them for 3.5 d, and treated them with increasing concentrations (0, 0.01, 0.1, 1, or 10 nM) of irisin for 5 min before either no treatment or gonadotropin-releasing hormone (GnRH) stimulation. After 2 h, media were harvested for LH and FSH assays. Irisin (0.1–10 nM) stimulated basal LH and FSH secretion, and these stimulatory effects were inhibited by the extracellular signal-regulated kinase or SMAD pathway inhibitors. In the presence of GnRH, irisin at 0.01–1 nM stimulated LH and FSH secretion. A higher dose of irisin (10 nM), however, suppressed the GnRH-induced LH and FSH levels. In conclusion, bovine gonadotrophs expressed IrisinR, and irisin controlled LH and FSH secretion from bovine gonadotrophs.
期刊介绍:
Animal Reproduction Science publishes results from studies relating to reproduction and fertility in animals. This includes both fundamental research and applied studies, including management practices that increase our understanding of the biology and manipulation of reproduction. Manuscripts should go into depth in the mechanisms involved in the research reported, rather than a give a mere description of findings. The focus is on animals that are useful to humans including food- and fibre-producing; companion/recreational; captive; and endangered species including zoo animals, but excluding laboratory animals unless the results of the study provide new information that impacts the basic understanding of the biology or manipulation of reproduction.
The journal''s scope includes the study of reproductive physiology and endocrinology, reproductive cycles, natural and artificial control of reproduction, preservation and use of gametes and embryos, pregnancy and parturition, infertility and sterility, diagnostic and therapeutic techniques.
The Editorial Board of Animal Reproduction Science has decided not to publish papers in which there is an exclusive examination of the in vitro development of oocytes and embryos; however, there will be consideration of papers that include in vitro studies where the source of the oocytes and/or development of the embryos beyond the blastocyst stage is part of the experimental design.