{"title":"重金属离子与易发生 G 型四联DNA 序列的相互作用。","authors":"Seyyed-Ali Mehrdad , Anne Cucchiarini , Jean-Louis Mergny , Sakineh Kazemi Noureini","doi":"10.1016/j.biochi.2024.05.021","DOIUrl":null,"url":null,"abstract":"<div><p>The industrial world exposes living organisms to a variety of metal pollutants. Here we investigated whether such elements affect G-rich sequences susceptible to fold into G-quadruplex (GQ) structures. Thermal stability and conformation of these oligoncleotides was studied at various molar ratios of a variety of heavy metal salts using thermal FRET, transition-FRET (t-FRET) and circular dichroism. Metal ions affected the thermal stability of the GQs to different extents; some metals had no effect on T<sub>m</sub> while other metals caused small to moderate changes in T<sub>m</sub> at 1:1 or 1:10 molar ratio. While most of the metals had no major effect, Al<sup>3+</sup>, Cd<sup>2+</sup>, Pb<sup>2+</sup>, Hg<sup>2+</sup> and Zn<sup>2+</sup> altered the thermal stability and structural features of the GQs. Some metals such as Pb<sup>2+</sup> and Hg<sup>2+</sup> exhibit differential interactions with telomere, c-myc and c-kit GQs. Overall, toxic heavy metals affect G-quadruplex stability in a sequence and topology dependent manner. This study provides new insight into how heavy metal exposure may affect gene expression and cellular responses.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heavy metal ions interactions with G-quadruplex-prone DNA sequences\",\"authors\":\"Seyyed-Ali Mehrdad , Anne Cucchiarini , Jean-Louis Mergny , Sakineh Kazemi Noureini\",\"doi\":\"10.1016/j.biochi.2024.05.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The industrial world exposes living organisms to a variety of metal pollutants. Here we investigated whether such elements affect G-rich sequences susceptible to fold into G-quadruplex (GQ) structures. Thermal stability and conformation of these oligoncleotides was studied at various molar ratios of a variety of heavy metal salts using thermal FRET, transition-FRET (t-FRET) and circular dichroism. Metal ions affected the thermal stability of the GQs to different extents; some metals had no effect on T<sub>m</sub> while other metals caused small to moderate changes in T<sub>m</sub> at 1:1 or 1:10 molar ratio. While most of the metals had no major effect, Al<sup>3+</sup>, Cd<sup>2+</sup>, Pb<sup>2+</sup>, Hg<sup>2+</sup> and Zn<sup>2+</sup> altered the thermal stability and structural features of the GQs. Some metals such as Pb<sup>2+</sup> and Hg<sup>2+</sup> exhibit differential interactions with telomere, c-myc and c-kit GQs. Overall, toxic heavy metals affect G-quadruplex stability in a sequence and topology dependent manner. This study provides new insight into how heavy metal exposure may affect gene expression and cellular responses.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0300908424001238\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300908424001238","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Heavy metal ions interactions with G-quadruplex-prone DNA sequences
The industrial world exposes living organisms to a variety of metal pollutants. Here we investigated whether such elements affect G-rich sequences susceptible to fold into G-quadruplex (GQ) structures. Thermal stability and conformation of these oligoncleotides was studied at various molar ratios of a variety of heavy metal salts using thermal FRET, transition-FRET (t-FRET) and circular dichroism. Metal ions affected the thermal stability of the GQs to different extents; some metals had no effect on Tm while other metals caused small to moderate changes in Tm at 1:1 or 1:10 molar ratio. While most of the metals had no major effect, Al3+, Cd2+, Pb2+, Hg2+ and Zn2+ altered the thermal stability and structural features of the GQs. Some metals such as Pb2+ and Hg2+ exhibit differential interactions with telomere, c-myc and c-kit GQs. Overall, toxic heavy metals affect G-quadruplex stability in a sequence and topology dependent manner. This study provides new insight into how heavy metal exposure may affect gene expression and cellular responses.