June Cutler , Alexandre Bodet , Josée Rivest , Patrick Cavanagh
{"title":"词语优势效应克服了拥挤现象。","authors":"June Cutler , Alexandre Bodet , Josée Rivest , Patrick Cavanagh","doi":"10.1016/j.visres.2024.108436","DOIUrl":null,"url":null,"abstract":"<div><p>Crowding and the word superiority effect are two perceptual phenomena that influence reading. The identification of the inner letters of a word can be hindered by crowding from adjacent letters, but it can be facilitated by the word context itself (the word superiority effect). In the present study, strings of four-letters (words and non-words) with different inter-letter spacings (ranging from an optimal spacing to produce crowding to a spacing too large to produce crowding) were presented briefly in the periphery and participants were asked to identify the third letter of the string. Each word had a partner word that was identical except for its third letter (e.g., COLD, CORD) so that guessing as the source of the improved performance for words could be ruled out. Unsurprisingly, letter identification accuracy for words was better than non-words. For non-words, it was lowest at closer spacings, confirming crowding. However, for words, accuracy remained high at all inter-letter spacings showing that crowding did not prevent identification of the inner letters. This result supports models of “holistic” word recognition where partial cues can lead to recognition without first identifying individual letters. Once the word is recognized, its inner letters can be recovered, despite their feature loss produced by crowding.</p></div>","PeriodicalId":23670,"journal":{"name":"Vision Research","volume":"222 ","pages":"Article 108436"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The word superiority effect overcomes crowding\",\"authors\":\"June Cutler , Alexandre Bodet , Josée Rivest , Patrick Cavanagh\",\"doi\":\"10.1016/j.visres.2024.108436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Crowding and the word superiority effect are two perceptual phenomena that influence reading. The identification of the inner letters of a word can be hindered by crowding from adjacent letters, but it can be facilitated by the word context itself (the word superiority effect). In the present study, strings of four-letters (words and non-words) with different inter-letter spacings (ranging from an optimal spacing to produce crowding to a spacing too large to produce crowding) were presented briefly in the periphery and participants were asked to identify the third letter of the string. Each word had a partner word that was identical except for its third letter (e.g., COLD, CORD) so that guessing as the source of the improved performance for words could be ruled out. Unsurprisingly, letter identification accuracy for words was better than non-words. For non-words, it was lowest at closer spacings, confirming crowding. However, for words, accuracy remained high at all inter-letter spacings showing that crowding did not prevent identification of the inner letters. This result supports models of “holistic” word recognition where partial cues can lead to recognition without first identifying individual letters. Once the word is recognized, its inner letters can be recovered, despite their feature loss produced by crowding.</p></div>\",\"PeriodicalId\":23670,\"journal\":{\"name\":\"Vision Research\",\"volume\":\"222 \",\"pages\":\"Article 108436\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vision Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042698924000804\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vision Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042698924000804","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Crowding and the word superiority effect are two perceptual phenomena that influence reading. The identification of the inner letters of a word can be hindered by crowding from adjacent letters, but it can be facilitated by the word context itself (the word superiority effect). In the present study, strings of four-letters (words and non-words) with different inter-letter spacings (ranging from an optimal spacing to produce crowding to a spacing too large to produce crowding) were presented briefly in the periphery and participants were asked to identify the third letter of the string. Each word had a partner word that was identical except for its third letter (e.g., COLD, CORD) so that guessing as the source of the improved performance for words could be ruled out. Unsurprisingly, letter identification accuracy for words was better than non-words. For non-words, it was lowest at closer spacings, confirming crowding. However, for words, accuracy remained high at all inter-letter spacings showing that crowding did not prevent identification of the inner letters. This result supports models of “holistic” word recognition where partial cues can lead to recognition without first identifying individual letters. Once the word is recognized, its inner letters can be recovered, despite their feature loss produced by crowding.
期刊介绍:
Vision Research is a journal devoted to the functional aspects of human, vertebrate and invertebrate vision and publishes experimental and observational studies, reviews, and theoretical and computational analyses. Vision Research also publishes clinical studies relevant to normal visual function and basic research relevant to visual dysfunction or its clinical investigation. Functional aspects of vision is interpreted broadly, ranging from molecular and cellular function to perception and behavior. Detailed descriptions are encouraged but enough introductory background should be included for non-specialists. Theoretical and computational papers should give a sense of order to the facts or point to new verifiable observations. Papers dealing with questions in the history of vision science should stress the development of ideas in the field.