{"title":"继续前进--揭示细菌细胞壁合成酶和单分子成像技术。","authors":"Amilcar J. Perez, Jie Xiao","doi":"10.1016/j.mib.2024.102490","DOIUrl":null,"url":null,"abstract":"<div><p>In this review, we explore the regulation of septal peptidoglycan (sPG) synthesis in bacterial cell division, a critical process for cell viability and proper morphology. Recent single-molecule imaging studies have revealed the processive movement of the FtsW:bPBP synthase complex along the septum, shedding light on the spatiotemporal dynamics of sPG synthases and their regulators. In diderm bacteria (<em>E. coli</em> and <em>C. crescentus</em>), the movement occurs at two distinct speeds, reflecting active synthesis or inactivity driven by FtsZ-treadmilling. In monoderm bacteria (<em>B. subtilis, S. pneumoniae</em>, and <em>S. aureus</em>), however, these enzymes exhibit only the active sPG-track-coupled processive movement. By comparing the dynamics of sPG synthases in these organisms and that of class-A penicillin-binding proteins <em>in vivo</em> and <em>in vitro</em>, we propose a unifying model for septal cell wall synthesis regulation across species, highlighting the roles of the sPG- and Z-tracks in orchestrating a robust bacterial cell wall constriction process.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"79 ","pages":"Article 102490"},"PeriodicalIF":5.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stay on track — revelations of bacterial cell wall synthesis enzymes and things that go by single-molecule imaging\",\"authors\":\"Amilcar J. Perez, Jie Xiao\",\"doi\":\"10.1016/j.mib.2024.102490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this review, we explore the regulation of septal peptidoglycan (sPG) synthesis in bacterial cell division, a critical process for cell viability and proper morphology. Recent single-molecule imaging studies have revealed the processive movement of the FtsW:bPBP synthase complex along the septum, shedding light on the spatiotemporal dynamics of sPG synthases and their regulators. In diderm bacteria (<em>E. coli</em> and <em>C. crescentus</em>), the movement occurs at two distinct speeds, reflecting active synthesis or inactivity driven by FtsZ-treadmilling. In monoderm bacteria (<em>B. subtilis, S. pneumoniae</em>, and <em>S. aureus</em>), however, these enzymes exhibit only the active sPG-track-coupled processive movement. By comparing the dynamics of sPG synthases in these organisms and that of class-A penicillin-binding proteins <em>in vivo</em> and <em>in vitro</em>, we propose a unifying model for septal cell wall synthesis regulation across species, highlighting the roles of the sPG- and Z-tracks in orchestrating a robust bacterial cell wall constriction process.</p></div>\",\"PeriodicalId\":10921,\"journal\":{\"name\":\"Current opinion in microbiology\",\"volume\":\"79 \",\"pages\":\"Article 102490\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369527424000663\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369527424000663","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
在这篇综述中,我们探讨了细菌细胞分裂过程中隔肽聚糖(sPG)合成的调控,这是细胞存活和正常形态的关键过程。最近的单分子成像研究揭示了 FtsW:bPBP 合成酶复合物沿着隔膜的过程性运动,从而揭示了 sPG 合成酶及其调控因子的时空动态。在双胚层细菌(大肠杆菌和新月体杆菌)中,这种运动以两种不同的速度进行,反映出 FtsZ 驱动的合成活跃或不活跃。然而,在单胚层细菌(枯草杆菌、肺炎双球菌和金黄色葡萄球菌)中,这些酶只表现出活跃的 sPG 轨道耦合过程性运动。通过比较这些生物体内的 sPG 合成酶和 A 类青霉素结合蛋白在体内和体外的动态,我们提出了一个跨物种隔细胞壁合成调控的统一模型,强调了 sPG- 和 Z 轨道在协调强大的细菌细胞壁收缩过程中的作用。
Stay on track — revelations of bacterial cell wall synthesis enzymes and things that go by single-molecule imaging
In this review, we explore the regulation of septal peptidoglycan (sPG) synthesis in bacterial cell division, a critical process for cell viability and proper morphology. Recent single-molecule imaging studies have revealed the processive movement of the FtsW:bPBP synthase complex along the septum, shedding light on the spatiotemporal dynamics of sPG synthases and their regulators. In diderm bacteria (E. coli and C. crescentus), the movement occurs at two distinct speeds, reflecting active synthesis or inactivity driven by FtsZ-treadmilling. In monoderm bacteria (B. subtilis, S. pneumoniae, and S. aureus), however, these enzymes exhibit only the active sPG-track-coupled processive movement. By comparing the dynamics of sPG synthases in these organisms and that of class-A penicillin-binding proteins in vivo and in vitro, we propose a unifying model for septal cell wall synthesis regulation across species, highlighting the roles of the sPG- and Z-tracks in orchestrating a robust bacterial cell wall constriction process.
期刊介绍:
Current Opinion in Microbiology is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of microbiology. It consists of 6 issues per year covering the following 11 sections, each of which is reviewed once a year:
Host-microbe interactions: bacteria
Cell regulation
Environmental microbiology
Host-microbe interactions: fungi/parasites/viruses
Antimicrobials
Microbial systems biology
Growth and development: eukaryotes/prokaryotes