Tyler Hack;Joel Bisarra;Saeromi Chung;Shekher Kummari;Drew A. Hall
{"title":"通过实时静脉注射阿片类药物定量减少药物篡改和转用。","authors":"Tyler Hack;Joel Bisarra;Saeromi Chung;Shekher Kummari;Drew A. Hall","doi":"10.1109/TBCAS.2024.3405815","DOIUrl":null,"url":null,"abstract":"Opioid tampering and diversion pose a serious problem for hospital patients with potentially life-threatening consequences. The ongoing opioid crisis has resulted in medications used for pain management and anesthesia, such as fentanyl and morphine, being stolen, substituted with a different substance, and abused. This work aims to mitigate tampering and diversion through analytical verification of the administered drug before it enters the patient. We present an electrochemical-based sensor and miniaturized wireless potentiostat that enable real-time intravenous (IV) monitoring of opioids, specifically fentanyl and morphine. The proposed system is connected to an IV drip system during surgery or post-operation recovery. Measurement results of two opioids are presented, including calibration curves and data on the sensor performance concerning pH, temperature, interference, reproducibility, and long-term stability. Finally, we demonstrate real-time fluidic measurements connected to a flow cell to simulate IV administration and a blind study classified using a machine-learning algorithm. The system achieves limits of detection (LODs) of 1.26 µg/mL and 2.75 µg/mL for fentanyl and morphine, respectively, while operating with >1-month battery lifetime due to an optimized ultra-low power 36 µA sleep mode.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 4","pages":"756-770"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating Medication Tampering and Diversion via Real-Time Intravenous Opioid Quantification\",\"authors\":\"Tyler Hack;Joel Bisarra;Saeromi Chung;Shekher Kummari;Drew A. Hall\",\"doi\":\"10.1109/TBCAS.2024.3405815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Opioid tampering and diversion pose a serious problem for hospital patients with potentially life-threatening consequences. The ongoing opioid crisis has resulted in medications used for pain management and anesthesia, such as fentanyl and morphine, being stolen, substituted with a different substance, and abused. This work aims to mitigate tampering and diversion through analytical verification of the administered drug before it enters the patient. We present an electrochemical-based sensor and miniaturized wireless potentiostat that enable real-time intravenous (IV) monitoring of opioids, specifically fentanyl and morphine. The proposed system is connected to an IV drip system during surgery or post-operation recovery. Measurement results of two opioids are presented, including calibration curves and data on the sensor performance concerning pH, temperature, interference, reproducibility, and long-term stability. Finally, we demonstrate real-time fluidic measurements connected to a flow cell to simulate IV administration and a blind study classified using a machine-learning algorithm. The system achieves limits of detection (LODs) of 1.26 µg/mL and 2.75 µg/mL for fentanyl and morphine, respectively, while operating with >1-month battery lifetime due to an optimized ultra-low power 36 µA sleep mode.\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"18 4\",\"pages\":\"756-770\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10542091/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10542091/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mitigating Medication Tampering and Diversion via Real-Time Intravenous Opioid Quantification
Opioid tampering and diversion pose a serious problem for hospital patients with potentially life-threatening consequences. The ongoing opioid crisis has resulted in medications used for pain management and anesthesia, such as fentanyl and morphine, being stolen, substituted with a different substance, and abused. This work aims to mitigate tampering and diversion through analytical verification of the administered drug before it enters the patient. We present an electrochemical-based sensor and miniaturized wireless potentiostat that enable real-time intravenous (IV) monitoring of opioids, specifically fentanyl and morphine. The proposed system is connected to an IV drip system during surgery or post-operation recovery. Measurement results of two opioids are presented, including calibration curves and data on the sensor performance concerning pH, temperature, interference, reproducibility, and long-term stability. Finally, we demonstrate real-time fluidic measurements connected to a flow cell to simulate IV administration and a blind study classified using a machine-learning algorithm. The system achieves limits of detection (LODs) of 1.26 µg/mL and 2.75 µg/mL for fentanyl and morphine, respectively, while operating with >1-month battery lifetime due to an optimized ultra-low power 36 µA sleep mode.