Xinyuan Liang , Fuchun Huang , Danqing Liu , Min Xu
{"title":"词汇歧义的大脑表征:区分同义词、多义词及其含义。","authors":"Xinyuan Liang , Fuchun Huang , Danqing Liu , Min Xu","doi":"10.1016/j.bandl.2024.105426","DOIUrl":null,"url":null,"abstract":"<div><p>In human languages, it is a common phenomenon for a single word to have multiple meanings. This study used fMRI to investigate how the brain processed different types of lexical ambiguity, and how it differentiated the meanings of ambiguous words. We focused on homonyms and polysemy that differed in the relatedness among multiple meanings. Participants (N = 35) performed a prime-target semantic relatedness task, where a specific meaning of an ambiguous word was primed. Results showed that homonyms elicited greater activation in bilateral dorsal prefrontal and posterior parietal cortices than polysemous words, suggesting that these regions may be more engaged in cognitive control when the meanings of ambiguous words are unrelated. Multivariate pattern analysis further revealed that meanings of homonyms with different syntactic categories were represented differently in the frontal and temporal cortices. The findings highlighted the importance of semantic relations and grammatical factors in the brain’s representation of lexical ambiguities.</p></div>","PeriodicalId":55330,"journal":{"name":"Brain and Language","volume":"253 ","pages":"Article 105426"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0093934X2400049X/pdfft?md5=2756cd73077d58890d947ffe56f1e796&pid=1-s2.0-S0093934X2400049X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Brain representations of lexical ambiguity: Disentangling homonymy, polysemy, and their meanings\",\"authors\":\"Xinyuan Liang , Fuchun Huang , Danqing Liu , Min Xu\",\"doi\":\"10.1016/j.bandl.2024.105426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In human languages, it is a common phenomenon for a single word to have multiple meanings. This study used fMRI to investigate how the brain processed different types of lexical ambiguity, and how it differentiated the meanings of ambiguous words. We focused on homonyms and polysemy that differed in the relatedness among multiple meanings. Participants (N = 35) performed a prime-target semantic relatedness task, where a specific meaning of an ambiguous word was primed. Results showed that homonyms elicited greater activation in bilateral dorsal prefrontal and posterior parietal cortices than polysemous words, suggesting that these regions may be more engaged in cognitive control when the meanings of ambiguous words are unrelated. Multivariate pattern analysis further revealed that meanings of homonyms with different syntactic categories were represented differently in the frontal and temporal cortices. The findings highlighted the importance of semantic relations and grammatical factors in the brain’s representation of lexical ambiguities.</p></div>\",\"PeriodicalId\":55330,\"journal\":{\"name\":\"Brain and Language\",\"volume\":\"253 \",\"pages\":\"Article 105426\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0093934X2400049X/pdfft?md5=2756cd73077d58890d947ffe56f1e796&pid=1-s2.0-S0093934X2400049X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and Language\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0093934X2400049X\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Language","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093934X2400049X","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
Brain representations of lexical ambiguity: Disentangling homonymy, polysemy, and their meanings
In human languages, it is a common phenomenon for a single word to have multiple meanings. This study used fMRI to investigate how the brain processed different types of lexical ambiguity, and how it differentiated the meanings of ambiguous words. We focused on homonyms and polysemy that differed in the relatedness among multiple meanings. Participants (N = 35) performed a prime-target semantic relatedness task, where a specific meaning of an ambiguous word was primed. Results showed that homonyms elicited greater activation in bilateral dorsal prefrontal and posterior parietal cortices than polysemous words, suggesting that these regions may be more engaged in cognitive control when the meanings of ambiguous words are unrelated. Multivariate pattern analysis further revealed that meanings of homonyms with different syntactic categories were represented differently in the frontal and temporal cortices. The findings highlighted the importance of semantic relations and grammatical factors in the brain’s representation of lexical ambiguities.
期刊介绍:
An interdisciplinary journal, Brain and Language publishes articles that elucidate the complex relationships among language, brain, and behavior. The journal covers the large variety of modern techniques in cognitive neuroscience, including functional and structural brain imaging, electrophysiology, cellular and molecular neurobiology, genetics, lesion-based approaches, and computational modeling. All articles must relate to human language and be relevant to the understanding of its neurobiological and neurocognitive bases. Published articles in the journal are expected to have significant theoretical novelty and/or practical implications, and use perspectives and methods from psychology, linguistics, and neuroscience along with brain data and brain measures.