{"title":"早产儿的芳基烃受体(AhR)受高氧调节。","authors":"Xi Yang, Xia Wang, Wenbin Dong","doi":"10.1080/14767058.2024.2349179","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate whether aryl hydrocarbon receptor (AhR) is involved in hyperoxia-mediated oxidative stress by observing the relationship between AhR and reactive oxygen species (ROS) in peripheral blood mononuclear cells (PBMCs) after oxygen exposure in premature infants.</p><p><strong>Methods: </strong>After 48 h of oxygen inhalation at different concentrations, discarded peripheral blood was collected to separate PBMCs and plasma. ROS were labeled with MitoSOX<sup>TM</sup> Red and detected by fluorescence microscopy in PBMCs. The level of MDA in plasma was detected by thiobarbituric acid colorimetry, the level of MCP-1 in plasma was detected by enzyme-linked immunosorbent assay (ELISA), the localization of AhR was detected by immunofluorescence, and the level of AhR expression in PBMCs was detected by Western blotting.</p><p><strong>Results: </strong>As the volume fraction of inspired oxygen increased, compared with those in the air control group, the levels of ROS, MDA in plasma, and MCP-1 in plasma increased gradually in the low concentration oxygen group, medium concentration oxygen group and high concentration oxygen group. The cytoplasm-nuclear translocation rate of AhR gradually increased, and the expression level of AhR gradually decreased. The levels of ROS in PBMCs, MDA in the plasma and MCP-1 in the plasma of premature infants were positively correlated with the cytoplasm-nuclear translocation rate of AhR but negatively correlated with the level of AhR expression.</p><p><strong>Conclusion: </strong>Aryl hydrocarbon receptor (AhR) is regulated by hyperoxia in premature infants.</p>","PeriodicalId":50146,"journal":{"name":"Journal of Maternal-Fetal & Neonatal Medicine","volume":"37 1","pages":"2349179"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aryl hydrocarbon receptor (AhR) is regulated by hyperoxia in premature infants.\",\"authors\":\"Xi Yang, Xia Wang, Wenbin Dong\",\"doi\":\"10.1080/14767058.2024.2349179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>To investigate whether aryl hydrocarbon receptor (AhR) is involved in hyperoxia-mediated oxidative stress by observing the relationship between AhR and reactive oxygen species (ROS) in peripheral blood mononuclear cells (PBMCs) after oxygen exposure in premature infants.</p><p><strong>Methods: </strong>After 48 h of oxygen inhalation at different concentrations, discarded peripheral blood was collected to separate PBMCs and plasma. ROS were labeled with MitoSOX<sup>TM</sup> Red and detected by fluorescence microscopy in PBMCs. The level of MDA in plasma was detected by thiobarbituric acid colorimetry, the level of MCP-1 in plasma was detected by enzyme-linked immunosorbent assay (ELISA), the localization of AhR was detected by immunofluorescence, and the level of AhR expression in PBMCs was detected by Western blotting.</p><p><strong>Results: </strong>As the volume fraction of inspired oxygen increased, compared with those in the air control group, the levels of ROS, MDA in plasma, and MCP-1 in plasma increased gradually in the low concentration oxygen group, medium concentration oxygen group and high concentration oxygen group. The cytoplasm-nuclear translocation rate of AhR gradually increased, and the expression level of AhR gradually decreased. The levels of ROS in PBMCs, MDA in the plasma and MCP-1 in the plasma of premature infants were positively correlated with the cytoplasm-nuclear translocation rate of AhR but negatively correlated with the level of AhR expression.</p><p><strong>Conclusion: </strong>Aryl hydrocarbon receptor (AhR) is regulated by hyperoxia in premature infants.</p>\",\"PeriodicalId\":50146,\"journal\":{\"name\":\"Journal of Maternal-Fetal & Neonatal Medicine\",\"volume\":\"37 1\",\"pages\":\"2349179\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Maternal-Fetal & Neonatal Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/14767058.2024.2349179\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Maternal-Fetal & Neonatal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14767058.2024.2349179","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
Aryl hydrocarbon receptor (AhR) is regulated by hyperoxia in premature infants.
Objective: To investigate whether aryl hydrocarbon receptor (AhR) is involved in hyperoxia-mediated oxidative stress by observing the relationship between AhR and reactive oxygen species (ROS) in peripheral blood mononuclear cells (PBMCs) after oxygen exposure in premature infants.
Methods: After 48 h of oxygen inhalation at different concentrations, discarded peripheral blood was collected to separate PBMCs and plasma. ROS were labeled with MitoSOXTM Red and detected by fluorescence microscopy in PBMCs. The level of MDA in plasma was detected by thiobarbituric acid colorimetry, the level of MCP-1 in plasma was detected by enzyme-linked immunosorbent assay (ELISA), the localization of AhR was detected by immunofluorescence, and the level of AhR expression in PBMCs was detected by Western blotting.
Results: As the volume fraction of inspired oxygen increased, compared with those in the air control group, the levels of ROS, MDA in plasma, and MCP-1 in plasma increased gradually in the low concentration oxygen group, medium concentration oxygen group and high concentration oxygen group. The cytoplasm-nuclear translocation rate of AhR gradually increased, and the expression level of AhR gradually decreased. The levels of ROS in PBMCs, MDA in the plasma and MCP-1 in the plasma of premature infants were positively correlated with the cytoplasm-nuclear translocation rate of AhR but negatively correlated with the level of AhR expression.
Conclusion: Aryl hydrocarbon receptor (AhR) is regulated by hyperoxia in premature infants.
期刊介绍:
The official journal of The European Association of Perinatal Medicine, The Federation of Asia and Oceania Perinatal Societies and The International Society of Perinatal Obstetricians. The journal publishes a wide range of peer-reviewed research on the obstetric, medical, genetic, mental health and surgical complications of pregnancy and their effects on the mother, fetus and neonate. Research on audit, evaluation and clinical care in maternal-fetal and perinatal medicine is also featured.