Seon Hyun Kim, Hye Jung Kim, Yeong Joo Kim, Yun Hak Kim, Hae Ryoun Park
{"title":"LncRNA EIF3J-DT 促进口腔鳞状细胞癌的化疗耐药性","authors":"Seon Hyun Kim, Hye Jung Kim, Yeong Joo Kim, Yun Hak Kim, Hae Ryoun Park","doi":"10.1111/odi.14987","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to screen oral squamous cell carcinoma (OSCC) diagnostic and prognostic candidates and investigate the potential functions and mechanisms of candidates in the chemoresistance of OSCC cell lines.</p><p><strong>Materials and methods: </strong>Differential expression profiling of lncRNA was performed in a large cohort of OSCC patients from the Cancer Genome Atlas database to identify OSCC diagnostic and prognostic candidates. Taxol resistance in OSCC cell lines was analyzed using MTT assay. OSCC cell lines transfected with EIF3J-DT pcDNA or siRNA were used to determine its regulatory effects on apoptosis, cell cycle distribution and autophagy using flow cytometry and western blot.</p><p><strong>Results: </strong>We identified EIF3J-DT as a candidate for OSCC diagnosis and prognosis. The expression level of EIF3J-DT in OSCC cell lines correlates with taxol resistance. EIF3J-DT silencing attenuated taxol resistance, and EIF3J-DT overexpression enhanced taxol resistance in OSCC cell lines. Silencing of EIF3J-DT reduced taxol resistance by inducing apoptosis, cell cycle arrest, and ATG14-mediated autophagy inhibition in OSCC cell lines.</p><p><strong>Conclusions: </strong>We found that EIF3J-DT induced chemoresistance by regulating apoptosis, cell cycle, and autophagy in OSCC cell lines, which EIF3J-DT might provide a novel therapeutic approach for OSCC as well as a diagnostic and prognostic factor.</p>","PeriodicalId":19615,"journal":{"name":"Oral diseases","volume":" ","pages":"4909-4920"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610658/pdf/","citationCount":"0","resultStr":"{\"title\":\"LncRNA EIF3J-DT promotes chemoresistance in oral squamous cell carcinoma.\",\"authors\":\"Seon Hyun Kim, Hye Jung Kim, Yeong Joo Kim, Yun Hak Kim, Hae Ryoun Park\",\"doi\":\"10.1111/odi.14987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study aimed to screen oral squamous cell carcinoma (OSCC) diagnostic and prognostic candidates and investigate the potential functions and mechanisms of candidates in the chemoresistance of OSCC cell lines.</p><p><strong>Materials and methods: </strong>Differential expression profiling of lncRNA was performed in a large cohort of OSCC patients from the Cancer Genome Atlas database to identify OSCC diagnostic and prognostic candidates. Taxol resistance in OSCC cell lines was analyzed using MTT assay. OSCC cell lines transfected with EIF3J-DT pcDNA or siRNA were used to determine its regulatory effects on apoptosis, cell cycle distribution and autophagy using flow cytometry and western blot.</p><p><strong>Results: </strong>We identified EIF3J-DT as a candidate for OSCC diagnosis and prognosis. The expression level of EIF3J-DT in OSCC cell lines correlates with taxol resistance. EIF3J-DT silencing attenuated taxol resistance, and EIF3J-DT overexpression enhanced taxol resistance in OSCC cell lines. Silencing of EIF3J-DT reduced taxol resistance by inducing apoptosis, cell cycle arrest, and ATG14-mediated autophagy inhibition in OSCC cell lines.</p><p><strong>Conclusions: </strong>We found that EIF3J-DT induced chemoresistance by regulating apoptosis, cell cycle, and autophagy in OSCC cell lines, which EIF3J-DT might provide a novel therapeutic approach for OSCC as well as a diagnostic and prognostic factor.</p>\",\"PeriodicalId\":19615,\"journal\":{\"name\":\"Oral diseases\",\"volume\":\" \",\"pages\":\"4909-4920\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11610658/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oral diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/odi.14987\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oral diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/odi.14987","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
LncRNA EIF3J-DT promotes chemoresistance in oral squamous cell carcinoma.
Objectives: This study aimed to screen oral squamous cell carcinoma (OSCC) diagnostic and prognostic candidates and investigate the potential functions and mechanisms of candidates in the chemoresistance of OSCC cell lines.
Materials and methods: Differential expression profiling of lncRNA was performed in a large cohort of OSCC patients from the Cancer Genome Atlas database to identify OSCC diagnostic and prognostic candidates. Taxol resistance in OSCC cell lines was analyzed using MTT assay. OSCC cell lines transfected with EIF3J-DT pcDNA or siRNA were used to determine its regulatory effects on apoptosis, cell cycle distribution and autophagy using flow cytometry and western blot.
Results: We identified EIF3J-DT as a candidate for OSCC diagnosis and prognosis. The expression level of EIF3J-DT in OSCC cell lines correlates with taxol resistance. EIF3J-DT silencing attenuated taxol resistance, and EIF3J-DT overexpression enhanced taxol resistance in OSCC cell lines. Silencing of EIF3J-DT reduced taxol resistance by inducing apoptosis, cell cycle arrest, and ATG14-mediated autophagy inhibition in OSCC cell lines.
Conclusions: We found that EIF3J-DT induced chemoresistance by regulating apoptosis, cell cycle, and autophagy in OSCC cell lines, which EIF3J-DT might provide a novel therapeutic approach for OSCC as well as a diagnostic and prognostic factor.
期刊介绍:
Oral Diseases is a multidisciplinary and international journal with a focus on head and neck disorders, edited by leaders in the field, Professor Giovanni Lodi (Editor-in-Chief, Milan, Italy), Professor Stefano Petti (Deputy Editor, Rome, Italy) and Associate Professor Gulshan Sunavala-Dossabhoy (Deputy Editor, Shreveport, LA, USA). The journal is pre-eminent in oral medicine. Oral Diseases specifically strives to link often-isolated areas of dentistry and medicine through broad-based scholarship that includes well-designed and controlled clinical research, analytical epidemiology, and the translation of basic science in pre-clinical studies. The journal typically publishes articles relevant to many related medical specialties including especially dermatology, gastroenterology, hematology, immunology, infectious diseases, neuropsychiatry, oncology and otolaryngology. The essential requirement is that all submitted research is hypothesis-driven, with significant positive and negative results both welcomed. Equal publication emphasis is placed on etiology, pathogenesis, diagnosis, prevention and treatment.