近期分心物的抑制作用:单个分心物与多个分心物。

IF 1.7 4区 医学 Q4 NEUROSCIENCES
Experimental Brain Research Pub Date : 2024-07-01 Epub Date: 2024-05-31 DOI:10.1007/s00221-024-06846-3
Eleanor S Smith, Trevor J Crawford
{"title":"近期分心物的抑制作用:单个分心物与多个分心物。","authors":"Eleanor S Smith, Trevor J Crawford","doi":"10.1007/s00221-024-06846-3","DOIUrl":null,"url":null,"abstract":"<p><p>In the complex interplay between sensory and cognitive processes, the brain must sift through a flood of sensory data to pinpoint relevant signals. This selective mechanism is crucial for the effective control of behaviour, by allowing organisms to focus on important tasks and blocking out distractions. The Inhibition of a Recent Distractor (IRD) Task examines this selection process by exploring how inhibiting distractors influences subsequent eye movements towards an object in the visual environment. In a series of experiments, research by Crawford et al. (2005a) demonstrated a delayed response to a target appearing at the location that was previously occupied by a distractor, demonstrating a legacy inhibition exerted by the distractor on the spatial location of the upcoming target. This study aimed to replicate this effect and to investigate any potential constraints when multiple distractors are presented. Exploring whether the effect is observed in more ecologically relevant scenarios with multiple distractors is crucial for assessing the extent to which it can be applied to a broader range of environments. Experiment 1 successfully replicated the effect, showing a significant IRD effect only with a single distractor. Experiments 2-5 explored a number of possible explanations for this phenomenon.</p>","PeriodicalId":12268,"journal":{"name":"Experimental Brain Research","volume":" ","pages":"1745-1759"},"PeriodicalIF":1.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208228/pdf/","citationCount":"0","resultStr":"{\"title\":\"The inhibitory effect of a recent distractor: singleton vs. multiple distractors.\",\"authors\":\"Eleanor S Smith, Trevor J Crawford\",\"doi\":\"10.1007/s00221-024-06846-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the complex interplay between sensory and cognitive processes, the brain must sift through a flood of sensory data to pinpoint relevant signals. This selective mechanism is crucial for the effective control of behaviour, by allowing organisms to focus on important tasks and blocking out distractions. The Inhibition of a Recent Distractor (IRD) Task examines this selection process by exploring how inhibiting distractors influences subsequent eye movements towards an object in the visual environment. In a series of experiments, research by Crawford et al. (2005a) demonstrated a delayed response to a target appearing at the location that was previously occupied by a distractor, demonstrating a legacy inhibition exerted by the distractor on the spatial location of the upcoming target. This study aimed to replicate this effect and to investigate any potential constraints when multiple distractors are presented. Exploring whether the effect is observed in more ecologically relevant scenarios with multiple distractors is crucial for assessing the extent to which it can be applied to a broader range of environments. Experiment 1 successfully replicated the effect, showing a significant IRD effect only with a single distractor. Experiments 2-5 explored a number of possible explanations for this phenomenon.</p>\",\"PeriodicalId\":12268,\"journal\":{\"name\":\"Experimental Brain Research\",\"volume\":\" \",\"pages\":\"1745-1759\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11208228/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Brain Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00221-024-06846-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Brain Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00221-024-06846-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在感官和认知过程之间复杂的相互作用中,大脑必须筛选大量的感官数据,找出相关信号。这种选择性机制对于有效控制行为至关重要,它能让生物体专注于重要任务并屏蔽干扰。抑制最近的分心物(IRD)任务通过探索抑制分心物如何影响随后对视觉环境中物体的眼球运动,来检验这种选择过程。在一系列实验中,克劳福德等人(2005a)的研究表明,当目标出现在之前被分心物占据的位置时,会出现延迟反应,这表明分心物对即将出现的目标的空间位置产生了遗留抑制作用。本研究旨在复制这种效应,并研究当出现多个分心物时的潜在制约因素。探索这种效应是否能在与生态环境更相关的多个分心物场景中观察到,对于评估这种效应在多大程度上能应用于更广泛的环境至关重要。实验 1 成功地复制了这一效应,仅在单个分心物的情况下显示出显著的 IRD 效应。实验 2-5 探索了这一现象的多种可能解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The inhibitory effect of a recent distractor: singleton vs. multiple distractors.

The inhibitory effect of a recent distractor: singleton vs. multiple distractors.

In the complex interplay between sensory and cognitive processes, the brain must sift through a flood of sensory data to pinpoint relevant signals. This selective mechanism is crucial for the effective control of behaviour, by allowing organisms to focus on important tasks and blocking out distractions. The Inhibition of a Recent Distractor (IRD) Task examines this selection process by exploring how inhibiting distractors influences subsequent eye movements towards an object in the visual environment. In a series of experiments, research by Crawford et al. (2005a) demonstrated a delayed response to a target appearing at the location that was previously occupied by a distractor, demonstrating a legacy inhibition exerted by the distractor on the spatial location of the upcoming target. This study aimed to replicate this effect and to investigate any potential constraints when multiple distractors are presented. Exploring whether the effect is observed in more ecologically relevant scenarios with multiple distractors is crucial for assessing the extent to which it can be applied to a broader range of environments. Experiment 1 successfully replicated the effect, showing a significant IRD effect only with a single distractor. Experiments 2-5 explored a number of possible explanations for this phenomenon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
5.00%
发文量
228
审稿时长
1 months
期刊介绍: Founded in 1966, Experimental Brain Research publishes original contributions on many aspects of experimental research of the central and peripheral nervous system. The focus is on molecular, physiology, behavior, neurochemistry, developmental, cellular and molecular neurobiology, and experimental pathology relevant to general problems of cerebral function. The journal publishes original papers, reviews, and mini-reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信