{"title":"血管新生是斑块内出血和颈动脉斑块不稳定的主要机制:叙述性综述。","authors":"Arkadiusz Migdalski, Arkadiusz Jawien","doi":"10.2174/0115701611304241240523045704","DOIUrl":null,"url":null,"abstract":"<p><p>Intraplaque neovascularization (IPN) is considered a leading mechanism causing carotid plaque destabilization. We provide an objective and comprehensive summary of the biology, imaging techniques, and treatment options related to carotid IPN. Plaque neovascularization has been reported to originate mainly from the adventitial vasa vasorum as a response to hypoxia. The leakage and rupture of neovessels lead to the formation of extravasations and foci of inflammation that destabilize the plaque. Vascular endothelial growth factor and its receptors are key regulators of neoangiogenesis. Neovascularization can be analyzed by advanced computed tomography and magnetic resonance imaging. The basic tools for the ultrasound assessment of IPN are contrast-enhanced ultrasound, superb microvascular imaging, and ultrasound molecular imaging. A promising direction of research seems to be the identification of patients with advanced plaque neovascularization. A simple test assessing low-velocity flow in the IPN can detect patients at risk of stroke before they experience rupture of defective neovessels and intracerebral embolism. In addition to surgical treatment, the stabilization of carotid atherosclerotic plaque can be supported pharmacologically. Statins have the best-documented role in this respect. The ideal moment of intensified therapeutic intervention in patients with previously stable carotid plaque is its increased neovascularization. However, the time frame in which intracerebral embolization may occur is unknown, and therapeutic intervention may be too late. The formation of deficient neovessels can currently be non-invasively evaluated with ultrasound. Superb microvascular imaging may change the clinical approach for asymptomatic patients at risk of cerebral ischemia.</p>","PeriodicalId":11278,"journal":{"name":"Current vascular pharmacology","volume":" ","pages":"377-385"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neovascularization as a Leading Mechanism of Intraplaque Hemorrhage and Carotid Plaque Destabilization: A Narrative Review.\",\"authors\":\"Arkadiusz Migdalski, Arkadiusz Jawien\",\"doi\":\"10.2174/0115701611304241240523045704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intraplaque neovascularization (IPN) is considered a leading mechanism causing carotid plaque destabilization. We provide an objective and comprehensive summary of the biology, imaging techniques, and treatment options related to carotid IPN. Plaque neovascularization has been reported to originate mainly from the adventitial vasa vasorum as a response to hypoxia. The leakage and rupture of neovessels lead to the formation of extravasations and foci of inflammation that destabilize the plaque. Vascular endothelial growth factor and its receptors are key regulators of neoangiogenesis. Neovascularization can be analyzed by advanced computed tomography and magnetic resonance imaging. The basic tools for the ultrasound assessment of IPN are contrast-enhanced ultrasound, superb microvascular imaging, and ultrasound molecular imaging. A promising direction of research seems to be the identification of patients with advanced plaque neovascularization. A simple test assessing low-velocity flow in the IPN can detect patients at risk of stroke before they experience rupture of defective neovessels and intracerebral embolism. In addition to surgical treatment, the stabilization of carotid atherosclerotic plaque can be supported pharmacologically. Statins have the best-documented role in this respect. The ideal moment of intensified therapeutic intervention in patients with previously stable carotid plaque is its increased neovascularization. However, the time frame in which intracerebral embolization may occur is unknown, and therapeutic intervention may be too late. The formation of deficient neovessels can currently be non-invasively evaluated with ultrasound. Superb microvascular imaging may change the clinical approach for asymptomatic patients at risk of cerebral ischemia.</p>\",\"PeriodicalId\":11278,\"journal\":{\"name\":\"Current vascular pharmacology\",\"volume\":\" \",\"pages\":\"377-385\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current vascular pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115701611304241240523045704\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current vascular pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115701611304241240523045704","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Neovascularization as a Leading Mechanism of Intraplaque Hemorrhage and Carotid Plaque Destabilization: A Narrative Review.
Intraplaque neovascularization (IPN) is considered a leading mechanism causing carotid plaque destabilization. We provide an objective and comprehensive summary of the biology, imaging techniques, and treatment options related to carotid IPN. Plaque neovascularization has been reported to originate mainly from the adventitial vasa vasorum as a response to hypoxia. The leakage and rupture of neovessels lead to the formation of extravasations and foci of inflammation that destabilize the plaque. Vascular endothelial growth factor and its receptors are key regulators of neoangiogenesis. Neovascularization can be analyzed by advanced computed tomography and magnetic resonance imaging. The basic tools for the ultrasound assessment of IPN are contrast-enhanced ultrasound, superb microvascular imaging, and ultrasound molecular imaging. A promising direction of research seems to be the identification of patients with advanced plaque neovascularization. A simple test assessing low-velocity flow in the IPN can detect patients at risk of stroke before they experience rupture of defective neovessels and intracerebral embolism. In addition to surgical treatment, the stabilization of carotid atherosclerotic plaque can be supported pharmacologically. Statins have the best-documented role in this respect. The ideal moment of intensified therapeutic intervention in patients with previously stable carotid plaque is its increased neovascularization. However, the time frame in which intracerebral embolization may occur is unknown, and therapeutic intervention may be too late. The formation of deficient neovessels can currently be non-invasively evaluated with ultrasound. Superb microvascular imaging may change the clinical approach for asymptomatic patients at risk of cerebral ischemia.
期刊介绍:
Current Vascular Pharmacology publishes clinical and research-based reviews/mini-reviews, original research articles, letters, debates, drug clinical trial studies and guest edited issues to update all those concerned with the treatment of vascular disease, bridging the gap between clinical practice and ongoing research.
Vascular disease is the commonest cause of death in Westernized countries and its incidence is on the increase in developing countries. It follows that considerable research is directed at establishing effective treatment for acute vascular events. Long-term treatment has also received considerable attention (e.g. for symptomatic relief). Furthermore, effective prevention, whether primary or secondary, is backed by the findings of several landmark trials. Vascular disease is a complex field with primary care physicians and nurse practitioners as well as several specialties involved. The latter include cardiology, vascular and cardio thoracic surgery, general medicine, radiology, clinical pharmacology and neurology (stroke units).