Jeanine Brantschen, Fabian Fopp, Antoine Adde, François Keck, Antoine Guisan, Loïc Pellissier, Florian Altermatt
{"title":"栖息地适宜性模型揭示了河流网络中环境 DNA 的空间信号","authors":"Jeanine Brantschen, Fabian Fopp, Antoine Adde, François Keck, Antoine Guisan, Loïc Pellissier, Florian Altermatt","doi":"10.1111/ecog.07267","DOIUrl":null,"url":null,"abstract":"<p>The rapid loss of biodiversity in freshwater systems asks for a robust and spatially explicit understanding of species' occurrences. As two complementing approaches, habitat suitability models provide information about species' potential occurrence, while environmental DNA (eDNA) based assessments provide indication of species' actual occurrence. Individually, both approaches are used in ecological studies to characterize biodiversity, yet they are rarely combined. Here, we integrated high-resolution habitat suitability models with eDNA-based assessments of aquatic invertebrates in riverine networks to understand their individual and combined capacity to inform on species' occurrence. We used eDNA sampling data from 172 river sites and combined the detection of taxa from three insect orders (Ephemeroptera, Plecoptera, Trichoptera; hereafter EPT) with suitable habitat predictions at a subcatchment level (2 km<sup>2</sup>). Overall, we find congruence of habitat suitability and eDNA-based detections. Yet, the models predicted suitable habitats beyond the number of detections by eDNA sampling, congruent with the suitable niche being larger than the realized niche. For local mismatches, where eDNA detected a species but the habitat was not predicted suitable, we calculated the minimal distance to upstream suitable habitat patches, indicating possible sources of eDNA signals from upstream sites subsequently being transported along the water flow. We estimated a median distance of 1.06 km (range 0.2–42 km) of DNA transport based on upstream habitat suitability, and this distance was significantly smaller than expected by null model predictions. This estimated transport distance is in the range of previously reported values and allows extrapolations of transport distances across many taxa and riverine systems. Together, the combination of eDNA and habitat suitability models allows larger scale and spatially integrative inferences about biodiversity, ultimately needed for the management and protection of biodiversity.</p>","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"2024 8","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07267","citationCount":"0","resultStr":"{\"title\":\"Habitat suitability models reveal the spatial signal of environmental DNA in riverine networks\",\"authors\":\"Jeanine Brantschen, Fabian Fopp, Antoine Adde, François Keck, Antoine Guisan, Loïc Pellissier, Florian Altermatt\",\"doi\":\"10.1111/ecog.07267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The rapid loss of biodiversity in freshwater systems asks for a robust and spatially explicit understanding of species' occurrences. As two complementing approaches, habitat suitability models provide information about species' potential occurrence, while environmental DNA (eDNA) based assessments provide indication of species' actual occurrence. Individually, both approaches are used in ecological studies to characterize biodiversity, yet they are rarely combined. Here, we integrated high-resolution habitat suitability models with eDNA-based assessments of aquatic invertebrates in riverine networks to understand their individual and combined capacity to inform on species' occurrence. We used eDNA sampling data from 172 river sites and combined the detection of taxa from three insect orders (Ephemeroptera, Plecoptera, Trichoptera; hereafter EPT) with suitable habitat predictions at a subcatchment level (2 km<sup>2</sup>). Overall, we find congruence of habitat suitability and eDNA-based detections. Yet, the models predicted suitable habitats beyond the number of detections by eDNA sampling, congruent with the suitable niche being larger than the realized niche. For local mismatches, where eDNA detected a species but the habitat was not predicted suitable, we calculated the minimal distance to upstream suitable habitat patches, indicating possible sources of eDNA signals from upstream sites subsequently being transported along the water flow. We estimated a median distance of 1.06 km (range 0.2–42 km) of DNA transport based on upstream habitat suitability, and this distance was significantly smaller than expected by null model predictions. This estimated transport distance is in the range of previously reported values and allows extrapolations of transport distances across many taxa and riverine systems. Together, the combination of eDNA and habitat suitability models allows larger scale and spatially integrative inferences about biodiversity, ultimately needed for the management and protection of biodiversity.</p>\",\"PeriodicalId\":51026,\"journal\":{\"name\":\"Ecography\",\"volume\":\"2024 8\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ecog.07267\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ecog.07267\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ecog.07267","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Habitat suitability models reveal the spatial signal of environmental DNA in riverine networks
The rapid loss of biodiversity in freshwater systems asks for a robust and spatially explicit understanding of species' occurrences. As two complementing approaches, habitat suitability models provide information about species' potential occurrence, while environmental DNA (eDNA) based assessments provide indication of species' actual occurrence. Individually, both approaches are used in ecological studies to characterize biodiversity, yet they are rarely combined. Here, we integrated high-resolution habitat suitability models with eDNA-based assessments of aquatic invertebrates in riverine networks to understand their individual and combined capacity to inform on species' occurrence. We used eDNA sampling data from 172 river sites and combined the detection of taxa from three insect orders (Ephemeroptera, Plecoptera, Trichoptera; hereafter EPT) with suitable habitat predictions at a subcatchment level (2 km2). Overall, we find congruence of habitat suitability and eDNA-based detections. Yet, the models predicted suitable habitats beyond the number of detections by eDNA sampling, congruent with the suitable niche being larger than the realized niche. For local mismatches, where eDNA detected a species but the habitat was not predicted suitable, we calculated the minimal distance to upstream suitable habitat patches, indicating possible sources of eDNA signals from upstream sites subsequently being transported along the water flow. We estimated a median distance of 1.06 km (range 0.2–42 km) of DNA transport based on upstream habitat suitability, and this distance was significantly smaller than expected by null model predictions. This estimated transport distance is in the range of previously reported values and allows extrapolations of transport distances across many taxa and riverine systems. Together, the combination of eDNA and habitat suitability models allows larger scale and spatially integrative inferences about biodiversity, ultimately needed for the management and protection of biodiversity.
期刊介绍:
ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem.
Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography.
Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.