用于轨道角动量生成的频率偏振复用反射元表面

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Yuying Jiang, Shuying Li, Xinlei Chen, Changqing Gu, Zhuo Li
{"title":"用于轨道角动量生成的频率偏振复用反射元表面","authors":"Yuying Jiang, Shuying Li, Xinlei Chen, Changqing Gu, Zhuo Li","doi":"10.1063/5.0207349","DOIUrl":null,"url":null,"abstract":"Frequency-polarization multiplexing metasurfaces (FPMMSs) capable of generating vortex beams carrying orbital angular momentum (OAM) have facilitated the actualization of high information capacity in optical and microwave communication. However, poor frequency controllability and the deficiency of theoretical methodology for frequency modulation of meta-atom remain challenges for existing FPMMSs with orthogonal linear polarization. In this work, a strategy to customize the operating band of the “I”-shaped meta-atom (ISMA) based on phase analysis of the equivalent circuit is proposed. A frequency modulation factor is introduced to adjust the operating band of the ISMA over a wide range based on the relationships between element geometry parameters, capacitance and inductance values in the equivalent circuit model, and the reflected phase of ISMA-type meta-atom. Then, a dual-band dual-polarized meta-atom is proposed by placing subunits operating at different bands cross-orthogonally, allowing the subunits to modulate the phase independently. A dual-band dual-polarized dual-mode OAM beam generator is designed and constructed as a proof-of-concept to verify the methodology. The measured results are in excellent agreement with the simulations. The proposed methodology for customizing frequencies establishes the groundwork for the implementation of OAM-based FPMMSs for secure and high-capacity communication in 6G massive-MIMO systems.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"99 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency-polarization multiplexing reflective metasurface for orbital angular momentum generation\",\"authors\":\"Yuying Jiang, Shuying Li, Xinlei Chen, Changqing Gu, Zhuo Li\",\"doi\":\"10.1063/5.0207349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequency-polarization multiplexing metasurfaces (FPMMSs) capable of generating vortex beams carrying orbital angular momentum (OAM) have facilitated the actualization of high information capacity in optical and microwave communication. However, poor frequency controllability and the deficiency of theoretical methodology for frequency modulation of meta-atom remain challenges for existing FPMMSs with orthogonal linear polarization. In this work, a strategy to customize the operating band of the “I”-shaped meta-atom (ISMA) based on phase analysis of the equivalent circuit is proposed. A frequency modulation factor is introduced to adjust the operating band of the ISMA over a wide range based on the relationships between element geometry parameters, capacitance and inductance values in the equivalent circuit model, and the reflected phase of ISMA-type meta-atom. Then, a dual-band dual-polarized meta-atom is proposed by placing subunits operating at different bands cross-orthogonally, allowing the subunits to modulate the phase independently. A dual-band dual-polarized dual-mode OAM beam generator is designed and constructed as a proof-of-concept to verify the methodology. The measured results are in excellent agreement with the simulations. The proposed methodology for customizing frequencies establishes the groundwork for the implementation of OAM-based FPMMSs for secure and high-capacity communication in 6G massive-MIMO systems.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0207349\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0207349","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

能够产生携带轨道角动量(OAM)的涡旋束的频率偏振复用元面(FPMMSs)促进了高信息容量在光通信和微波通信中的实现。然而,频率可控性差以及元原子频率调制理论方法的不足仍然是现有正交线性极化 FPMMS 面临的挑战。本文提出了一种基于等效电路相位分析的 "I "形元原子(ISMA)工作频带定制策略。根据元件几何参数、等效电路模型中的电容和电感值以及 ISMA 型元原子的反射相位之间的关系,引入了一个频率调制因子,以在较大范围内调整 ISMA 的工作频带。然后,提出了一种双波段双极化元原子,将工作在不同波段的子单元交叉正交放置,使子单元能够独立调制相位。为验证该方法,设计并建造了一个双波段双极化双模式 OAM 光束发生器,作为概念验证。测量结果与模拟结果非常吻合。所提出的频率定制方法为在 6G 大规模多输入多输出系统中实现基于 OAM 的安全大容量通信 FPMMS 奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency-polarization multiplexing reflective metasurface for orbital angular momentum generation
Frequency-polarization multiplexing metasurfaces (FPMMSs) capable of generating vortex beams carrying orbital angular momentum (OAM) have facilitated the actualization of high information capacity in optical and microwave communication. However, poor frequency controllability and the deficiency of theoretical methodology for frequency modulation of meta-atom remain challenges for existing FPMMSs with orthogonal linear polarization. In this work, a strategy to customize the operating band of the “I”-shaped meta-atom (ISMA) based on phase analysis of the equivalent circuit is proposed. A frequency modulation factor is introduced to adjust the operating band of the ISMA over a wide range based on the relationships between element geometry parameters, capacitance and inductance values in the equivalent circuit model, and the reflected phase of ISMA-type meta-atom. Then, a dual-band dual-polarized meta-atom is proposed by placing subunits operating at different bands cross-orthogonally, allowing the subunits to modulate the phase independently. A dual-band dual-polarized dual-mode OAM beam generator is designed and constructed as a proof-of-concept to verify the methodology. The measured results are in excellent agreement with the simulations. The proposed methodology for customizing frequencies establishes the groundwork for the implementation of OAM-based FPMMSs for secure and high-capacity communication in 6G massive-MIMO systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信