{"title":"用于氧电催化的可调谐层状锰氧化物","authors":"Eric Liu, Drew Higgins","doi":"10.1038/s41929-024-01144-1","DOIUrl":null,"url":null,"abstract":"Platinum-free electrocatalysts for anion exchange membrane fuel cells and water electrolysers are required to improve the techno-economic viability of these electrochemical technologies for the sustainable production and use of hydrogen. Modifying the electronic structure of Li-intercalated layered Mn-oxides via Ru doping resulted in a catalyst displaying impressive performance towards both technologies.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 5","pages":"469-471"},"PeriodicalIF":42.8000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable layered Mn oxides for oxygen electrocatalysis\",\"authors\":\"Eric Liu, Drew Higgins\",\"doi\":\"10.1038/s41929-024-01144-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Platinum-free electrocatalysts for anion exchange membrane fuel cells and water electrolysers are required to improve the techno-economic viability of these electrochemical technologies for the sustainable production and use of hydrogen. Modifying the electronic structure of Li-intercalated layered Mn-oxides via Ru doping resulted in a catalyst displaying impressive performance towards both technologies.\",\"PeriodicalId\":18845,\"journal\":{\"name\":\"Nature Catalysis\",\"volume\":\"7 5\",\"pages\":\"469-471\"},\"PeriodicalIF\":42.8000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41929-024-01144-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01144-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Tunable layered Mn oxides for oxygen electrocatalysis
Platinum-free electrocatalysts for anion exchange membrane fuel cells and water electrolysers are required to improve the techno-economic viability of these electrochemical technologies for the sustainable production and use of hydrogen. Modifying the electronic structure of Li-intercalated layered Mn-oxides via Ru doping resulted in a catalyst displaying impressive performance towards both technologies.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.