{"title":"生物炭粉尘排放:会影响健康吗?毒性评估的初步结果。","authors":"Silvana Pinelli , Stefano Rossi , Alessio Malcevschi , Michele Miragoli , Massimo Corradi , Luisella Selis , Sara Tagliaferri , Francesca Rossi , Delia Cavallo , Cinzia Lucia Ursini , Diana Poli , Paola Mozzoni","doi":"10.1016/j.etap.2024.104477","DOIUrl":null,"url":null,"abstract":"<div><p>Biochar is currently garnering interest as an alternative to commercial fertilizer and as a tool to counteract global warming. However, its use is increasingly drawing attention, particularly concerning the fine dust that can be developed during its manufacture, transport, and use. This work aimed to assess the toxicity of fine particulate Biochar (<PM<sub>10</sub>) via <em>in-vitro</em> and <em>in-vivo</em> experiments as a first step for the evaluation of toxicity values. As <em>in-vitro</em> experiments, cell lines showed inhibition of proliferation following the reduction of expression genes involved in cell cycle control, increase in the production of ROS and IL-8, and decrease in intracellular ATP. <em>In-vivo</em> rat exposure induced hyperemia, edema, and inflammatory phenomena with infiltrations of neutrophil granulocytes and macrophages at the alveolar and bronchiolar levels. Both <em>in-vitro</em> and <em>in-vivo</em> studies highlighted how exposure to Biochar particulates leads to an inflammatory condition and oxidative stress.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1382668924001170/pdfft?md5=ad4b88cede3a9815979f6c28c4ee0785&pid=1-s2.0-S1382668924001170-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Biochar dust emission: Is it a health concern? Preliminary results for toxicity assessment\",\"authors\":\"Silvana Pinelli , Stefano Rossi , Alessio Malcevschi , Michele Miragoli , Massimo Corradi , Luisella Selis , Sara Tagliaferri , Francesca Rossi , Delia Cavallo , Cinzia Lucia Ursini , Diana Poli , Paola Mozzoni\",\"doi\":\"10.1016/j.etap.2024.104477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biochar is currently garnering interest as an alternative to commercial fertilizer and as a tool to counteract global warming. However, its use is increasingly drawing attention, particularly concerning the fine dust that can be developed during its manufacture, transport, and use. This work aimed to assess the toxicity of fine particulate Biochar (<PM<sub>10</sub>) via <em>in-vitro</em> and <em>in-vivo</em> experiments as a first step for the evaluation of toxicity values. As <em>in-vitro</em> experiments, cell lines showed inhibition of proliferation following the reduction of expression genes involved in cell cycle control, increase in the production of ROS and IL-8, and decrease in intracellular ATP. <em>In-vivo</em> rat exposure induced hyperemia, edema, and inflammatory phenomena with infiltrations of neutrophil granulocytes and macrophages at the alveolar and bronchiolar levels. Both <em>in-vitro</em> and <em>in-vivo</em> studies highlighted how exposure to Biochar particulates leads to an inflammatory condition and oxidative stress.</p></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1382668924001170/pdfft?md5=ad4b88cede3a9815979f6c28c4ee0785&pid=1-s2.0-S1382668924001170-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1382668924001170\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1382668924001170","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
生物炭作为商业肥料的替代品和应对全球变暖的工具,目前正引起人们的兴趣。然而,生物炭的使用也日益引起人们的关注,特别是在其制造、运输和使用过程中可能产生的微尘。这项工作旨在通过体外和体内实验评估细颗粒生物碳(10)的毒性,作为评估毒性值的第一步。在体外实验中,由于参与细胞周期控制的基因表达减少、ROS 和 IL-8 的产生增加以及细胞内 ATP 的减少,细胞株的增殖受到抑制。大鼠体内接触后,肺泡和支气管会出现充血、水肿和炎症现象,并伴有中性粒细胞和巨噬细胞的浸润。体外和体内研究都强调了接触生物炭微粒如何导致炎症和氧化应激。
Biochar dust emission: Is it a health concern? Preliminary results for toxicity assessment
Biochar is currently garnering interest as an alternative to commercial fertilizer and as a tool to counteract global warming. However, its use is increasingly drawing attention, particularly concerning the fine dust that can be developed during its manufacture, transport, and use. This work aimed to assess the toxicity of fine particulate Biochar (<PM10) via in-vitro and in-vivo experiments as a first step for the evaluation of toxicity values. As in-vitro experiments, cell lines showed inhibition of proliferation following the reduction of expression genes involved in cell cycle control, increase in the production of ROS and IL-8, and decrease in intracellular ATP. In-vivo rat exposure induced hyperemia, edema, and inflammatory phenomena with infiltrations of neutrophil granulocytes and macrophages at the alveolar and bronchiolar levels. Both in-vitro and in-vivo studies highlighted how exposure to Biochar particulates leads to an inflammatory condition and oxidative stress.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.