{"title":"HoopTransformer:通过对球员轨迹的自我监督学习,提高 NBA 进攻战术识别能力。","authors":"Xing Wang, Zitian Tang, Jianchong Shao, Sam Robertson, Miguel-Ángel Gómez, Shaoliang Zhang","doi":"10.1007/s40279-024-02030-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Understanding and recognizing basketball offensive set plays, which involve intricate interactions between players, have always been regarded as challenging tasks for untrained humans, not to mention machines. In this study, our objective is to propose an artificial intelligence model that can automatically recognize offensive plays using a novel self-supervised learning approach.</p><p><strong>Methods: </strong>The dataset was collected by SportVU from 632 games during the 2015-2016 season of the National Basketball Association (NBA), with a total of 90,524 possessions. A multi-agent motion prediction pretraining model was built on the basis of axial-attention transformer and trained with different masking strategies: motion prediction (MP), motion reconstruction (MR), and MP + MR joint strategy. A downstream play-level classification task and similarity search were used to evaluate the models' performance.</p><p><strong>Results: </strong>The results showed that the MP + MR joint masking strategy maximized the ability of the model compared with individual masking strategies. For the classification task, the joint strategy achieved a top-1 accuracy of 81.5% and top-3 accuracy of 97.5%. In the similarity search evaluation, the joint strategy attained a top-5 accuracy of 76% and top-10 accuracy of 59%. Additionally, with the same MP + MR joint masking strategy, our HoopTransformer model outperformed the two baseline models in the classification task and similarity search.</p><p><strong>Conclusion: </strong>This study presents a self-supervised learning model and demonstrates the effectiveness and potential of the model in accurately comprehending and capturing player movements and complex interactions during offensive plays.</p>","PeriodicalId":21969,"journal":{"name":"Sports Medicine","volume":" ","pages":"2663-2673"},"PeriodicalIF":9.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HoopTransformer: Advancing NBA Offensive Play Recognition with Self-Supervised Learning from Player Trajectories.\",\"authors\":\"Xing Wang, Zitian Tang, Jianchong Shao, Sam Robertson, Miguel-Ángel Gómez, Shaoliang Zhang\",\"doi\":\"10.1007/s40279-024-02030-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>Understanding and recognizing basketball offensive set plays, which involve intricate interactions between players, have always been regarded as challenging tasks for untrained humans, not to mention machines. In this study, our objective is to propose an artificial intelligence model that can automatically recognize offensive plays using a novel self-supervised learning approach.</p><p><strong>Methods: </strong>The dataset was collected by SportVU from 632 games during the 2015-2016 season of the National Basketball Association (NBA), with a total of 90,524 possessions. A multi-agent motion prediction pretraining model was built on the basis of axial-attention transformer and trained with different masking strategies: motion prediction (MP), motion reconstruction (MR), and MP + MR joint strategy. A downstream play-level classification task and similarity search were used to evaluate the models' performance.</p><p><strong>Results: </strong>The results showed that the MP + MR joint masking strategy maximized the ability of the model compared with individual masking strategies. For the classification task, the joint strategy achieved a top-1 accuracy of 81.5% and top-3 accuracy of 97.5%. In the similarity search evaluation, the joint strategy attained a top-5 accuracy of 76% and top-10 accuracy of 59%. Additionally, with the same MP + MR joint masking strategy, our HoopTransformer model outperformed the two baseline models in the classification task and similarity search.</p><p><strong>Conclusion: </strong>This study presents a self-supervised learning model and demonstrates the effectiveness and potential of the model in accurately comprehending and capturing player movements and complex interactions during offensive plays.</p>\",\"PeriodicalId\":21969,\"journal\":{\"name\":\"Sports Medicine\",\"volume\":\" \",\"pages\":\"2663-2673\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sports Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s40279-024-02030-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"SPORT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s40279-024-02030-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
HoopTransformer: Advancing NBA Offensive Play Recognition with Self-Supervised Learning from Player Trajectories.
Background and objective: Understanding and recognizing basketball offensive set plays, which involve intricate interactions between players, have always been regarded as challenging tasks for untrained humans, not to mention machines. In this study, our objective is to propose an artificial intelligence model that can automatically recognize offensive plays using a novel self-supervised learning approach.
Methods: The dataset was collected by SportVU from 632 games during the 2015-2016 season of the National Basketball Association (NBA), with a total of 90,524 possessions. A multi-agent motion prediction pretraining model was built on the basis of axial-attention transformer and trained with different masking strategies: motion prediction (MP), motion reconstruction (MR), and MP + MR joint strategy. A downstream play-level classification task and similarity search were used to evaluate the models' performance.
Results: The results showed that the MP + MR joint masking strategy maximized the ability of the model compared with individual masking strategies. For the classification task, the joint strategy achieved a top-1 accuracy of 81.5% and top-3 accuracy of 97.5%. In the similarity search evaluation, the joint strategy attained a top-5 accuracy of 76% and top-10 accuracy of 59%. Additionally, with the same MP + MR joint masking strategy, our HoopTransformer model outperformed the two baseline models in the classification task and similarity search.
Conclusion: This study presents a self-supervised learning model and demonstrates the effectiveness and potential of the model in accurately comprehending and capturing player movements and complex interactions during offensive plays.
期刊介绍:
Sports Medicine focuses on providing definitive and comprehensive review articles that interpret and evaluate current literature, aiming to offer insights into research findings in the sports medicine and exercise field. The journal covers major topics such as sports medicine and sports science, medical syndromes associated with sport and exercise, clinical medicine's role in injury prevention and treatment, exercise for rehabilitation and health, and the application of physiological and biomechanical principles to specific sports.
Types of Articles:
Review Articles: Definitive and comprehensive reviews that interpret and evaluate current literature to provide rationale for and application of research findings.
Leading/Current Opinion Articles: Overviews of contentious or emerging issues in the field.
Original Research Articles: High-quality research articles.
Enhanced Features: Additional features like slide sets, videos, and animations aimed at increasing the visibility, readership, and educational value of the journal's content.
Plain Language Summaries: Summaries accompanying articles to assist readers in understanding important medical advances.
Peer Review Process:
All manuscripts undergo peer review by international experts to ensure quality and rigor. The journal also welcomes Letters to the Editor, which will be considered for publication.