Komal Attri, Bhupendra Chudasama, Roop L Mahajan, Diptiman Choudhury
{"title":"集成胰岛素-铁纳米粒子:用于受体特异性生物成像、活性氧清除和伤口愈合的多模式方法。","authors":"Komal Attri, Bhupendra Chudasama, Roop L Mahajan, Diptiman Choudhury","doi":"10.1186/s11671-024-04024-6","DOIUrl":null,"url":null,"abstract":"<p><p>Metallic nanoparticles have emerged as a promising option for various biological applications, owing to their distinct characteristics such as small size, optical properties, and ability to exhibit luminescence. In this study, we have successfully employed a one-pot method to synthesize multifunctional insulin-protected iron [Fe(II)] nanoparticles denoted as [IFe(II)NPs]. The formation of IFe(II)NPs is confirmed by the presence of FTIR bonds at 447.47 and 798.28 cm<sup>-1</sup>, corresponding to Fe-O and Fe-N bonds, respectively. Detailed analysis of the HR-TEM-EDS-SAED data reveals that the particles are spherical in shape, partially amorphous in nature, and have a diameter of 28.6 ± 5.2 nm. Additionally, Metal Ion Binding (MIB) and Protein Data Bank (PDB) analyses affirm the binding of iron ions to the insulin hexamer. Our findings underscore the potential of IFe(II)NPs as a promising new platform for a variety of biomedical applications due to their high signal-to-noise ratio, and minimal background fluorescence. The particles are highly luminescent, biocompatible, and have a significant quantum yield (0.632). Exemplar applications covered in this paper include insulin receptor recognition and protection against reactive oxygen species (ROS), harmful molecules known to inflict damage on cells and DNA. The IFe(II)NPs effectively mitigate ROS-induced inflammation, which is a hinderance to wound recovery, thereby facilitating enhanced wound recovery.</p>","PeriodicalId":72828,"journal":{"name":"Discover nano","volume":"19 1","pages":"96"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139842/pdf/","citationCount":"0","resultStr":"{\"title\":\"Integrated insulin-iron nanoparticles: a multi-modal approach for receptor-specific bioimaging, reactive oxygen species scavenging, and wound healing.\",\"authors\":\"Komal Attri, Bhupendra Chudasama, Roop L Mahajan, Diptiman Choudhury\",\"doi\":\"10.1186/s11671-024-04024-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metallic nanoparticles have emerged as a promising option for various biological applications, owing to their distinct characteristics such as small size, optical properties, and ability to exhibit luminescence. In this study, we have successfully employed a one-pot method to synthesize multifunctional insulin-protected iron [Fe(II)] nanoparticles denoted as [IFe(II)NPs]. The formation of IFe(II)NPs is confirmed by the presence of FTIR bonds at 447.47 and 798.28 cm<sup>-1</sup>, corresponding to Fe-O and Fe-N bonds, respectively. Detailed analysis of the HR-TEM-EDS-SAED data reveals that the particles are spherical in shape, partially amorphous in nature, and have a diameter of 28.6 ± 5.2 nm. Additionally, Metal Ion Binding (MIB) and Protein Data Bank (PDB) analyses affirm the binding of iron ions to the insulin hexamer. Our findings underscore the potential of IFe(II)NPs as a promising new platform for a variety of biomedical applications due to their high signal-to-noise ratio, and minimal background fluorescence. The particles are highly luminescent, biocompatible, and have a significant quantum yield (0.632). Exemplar applications covered in this paper include insulin receptor recognition and protection against reactive oxygen species (ROS), harmful molecules known to inflict damage on cells and DNA. The IFe(II)NPs effectively mitigate ROS-induced inflammation, which is a hinderance to wound recovery, thereby facilitating enhanced wound recovery.</p>\",\"PeriodicalId\":72828,\"journal\":{\"name\":\"Discover nano\",\"volume\":\"19 1\",\"pages\":\"96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139842/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discover nano\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s11671-024-04024-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discover nano","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-024-04024-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Integrated insulin-iron nanoparticles: a multi-modal approach for receptor-specific bioimaging, reactive oxygen species scavenging, and wound healing.
Metallic nanoparticles have emerged as a promising option for various biological applications, owing to their distinct characteristics such as small size, optical properties, and ability to exhibit luminescence. In this study, we have successfully employed a one-pot method to synthesize multifunctional insulin-protected iron [Fe(II)] nanoparticles denoted as [IFe(II)NPs]. The formation of IFe(II)NPs is confirmed by the presence of FTIR bonds at 447.47 and 798.28 cm-1, corresponding to Fe-O and Fe-N bonds, respectively. Detailed analysis of the HR-TEM-EDS-SAED data reveals that the particles are spherical in shape, partially amorphous in nature, and have a diameter of 28.6 ± 5.2 nm. Additionally, Metal Ion Binding (MIB) and Protein Data Bank (PDB) analyses affirm the binding of iron ions to the insulin hexamer. Our findings underscore the potential of IFe(II)NPs as a promising new platform for a variety of biomedical applications due to their high signal-to-noise ratio, and minimal background fluorescence. The particles are highly luminescent, biocompatible, and have a significant quantum yield (0.632). Exemplar applications covered in this paper include insulin receptor recognition and protection against reactive oxygen species (ROS), harmful molecules known to inflict damage on cells and DNA. The IFe(II)NPs effectively mitigate ROS-induced inflammation, which is a hinderance to wound recovery, thereby facilitating enhanced wound recovery.