使用专有软件对阿尔茨海默病大脑切片中的神经细胞斑块和神经纤维缠结进行自动深度学习分割。

IF 3 3区 医学 Q2 CLINICAL NEUROLOGY
Lea Ingrassia, Susana Boluda, Marie-Claude Potier, Stéphane Haïk, Gabriel Jimenez, Anuradha Kar, Daniel Racoceanu, Benoît Delatour, Lev Stimmer
{"title":"使用专有软件对阿尔茨海默病大脑切片中的神经细胞斑块和神经纤维缠结进行自动深度学习分割。","authors":"Lea Ingrassia, Susana Boluda, Marie-Claude Potier, Stéphane Haïk, Gabriel Jimenez, Anuradha Kar, Daniel Racoceanu, Benoît Delatour, Lev Stimmer","doi":"10.1093/jnen/nlae048","DOIUrl":null,"url":null,"abstract":"<p><p>Neuropathological diagnosis of Alzheimer disease (AD) relies on semiquantitative analysis of phosphorylated tau-positive neurofibrillary tangles (NFTs) and neuritic plaques (NPs), without consideration of lesion heterogeneity in individual cases. We developed a deep learning workflow for automated annotation and segmentation of NPs and NFTs from AT8-immunostained whole slide images (WSIs) of AD brain sections. Fifteen WSIs of frontal cortex from 4 biobanks with varying tissue quality, staining intensity, and scanning formats were analyzed. We established an artificial intelligence (AI)-driven iterative procedure to improve the generation of expert-validated annotation datasets for NPs and NFTs thereby increasing annotation quality by >50%. This strategy yielded an expert-validated annotation database with 5013 NPs and 5143 NFTs. We next trained two U-Net convolutional neural networks for detection and segmentation of NPs or NFTs, achieving high accuracy and consistency (mean Dice similarity coefficient: NPs, 0.77; NFTs, 0.81). The workflow showed high generalization performance across different cases. This study serves as a proof-of-concept for the utilization of proprietary image analysis software (Visiopharm) in the automated deep learning segmentation of NPs and NFTs, demonstrating that AI can significantly improve the annotation quality of complex neuropathological features and enable the creation of highly precise models for identifying these markers in AD brain sections.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":"752-762"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333827/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated deep learning segmentation of neuritic plaques and neurofibrillary tangles in Alzheimer disease brain sections using a proprietary software.\",\"authors\":\"Lea Ingrassia, Susana Boluda, Marie-Claude Potier, Stéphane Haïk, Gabriel Jimenez, Anuradha Kar, Daniel Racoceanu, Benoît Delatour, Lev Stimmer\",\"doi\":\"10.1093/jnen/nlae048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuropathological diagnosis of Alzheimer disease (AD) relies on semiquantitative analysis of phosphorylated tau-positive neurofibrillary tangles (NFTs) and neuritic plaques (NPs), without consideration of lesion heterogeneity in individual cases. We developed a deep learning workflow for automated annotation and segmentation of NPs and NFTs from AT8-immunostained whole slide images (WSIs) of AD brain sections. Fifteen WSIs of frontal cortex from 4 biobanks with varying tissue quality, staining intensity, and scanning formats were analyzed. We established an artificial intelligence (AI)-driven iterative procedure to improve the generation of expert-validated annotation datasets for NPs and NFTs thereby increasing annotation quality by >50%. This strategy yielded an expert-validated annotation database with 5013 NPs and 5143 NFTs. We next trained two U-Net convolutional neural networks for detection and segmentation of NPs or NFTs, achieving high accuracy and consistency (mean Dice similarity coefficient: NPs, 0.77; NFTs, 0.81). The workflow showed high generalization performance across different cases. This study serves as a proof-of-concept for the utilization of proprietary image analysis software (Visiopharm) in the automated deep learning segmentation of NPs and NFTs, demonstrating that AI can significantly improve the annotation quality of complex neuropathological features and enable the creation of highly precise models for identifying these markers in AD brain sections.</p>\",\"PeriodicalId\":16682,\"journal\":{\"name\":\"Journal of Neuropathology and Experimental Neurology\",\"volume\":\" \",\"pages\":\"752-762\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11333827/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuropathology and Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jnen/nlae048\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuropathology and Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jnen/nlae048","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(AD)的神经病理学诊断依赖于对磷酸化 tau 阳性神经纤维缠结(NFTs)和神经嵴斑块(NPs)的半定量分析,而不考虑单个病例的病变异质性。我们开发了一种深度学习工作流程,用于从AD脑切片的AT8免疫染色全切片图像(WSI)中自动标注和分割NPs和NFTs。我们分析了来自 4 个生物库的 15 张额叶皮层 WSI 图像,这些图像的组织质量、染色强度和扫描格式各不相同。我们建立了一个人工智能(AI)驱动的迭代程序,以改进经专家验证的NPs和NFTs注释数据集的生成,从而将注释质量提高了50%以上。这一策略产生了一个经过专家验证的注释数据库,其中包含 5013 个 NPs 和 5143 个 NFTs。接下来,我们训练了两个 U-Net 卷积神经网络来检测和分割 NPs 或 NFTs,取得了很高的准确性和一致性(平均 Dice 相似性系数:NPs,0.77;NFTs,0.81)。该工作流程在不同病例中表现出较高的通用性。这项研究是利用专有图像分析软件(Visiopharm)自动对NPs和NFTs进行深度学习分割的概念验证,证明了人工智能能显著提高复杂神经病理学特征的注释质量,并能创建高度精确的模型来识别AD脑切片中的这些标记物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated deep learning segmentation of neuritic plaques and neurofibrillary tangles in Alzheimer disease brain sections using a proprietary software.

Neuropathological diagnosis of Alzheimer disease (AD) relies on semiquantitative analysis of phosphorylated tau-positive neurofibrillary tangles (NFTs) and neuritic plaques (NPs), without consideration of lesion heterogeneity in individual cases. We developed a deep learning workflow for automated annotation and segmentation of NPs and NFTs from AT8-immunostained whole slide images (WSIs) of AD brain sections. Fifteen WSIs of frontal cortex from 4 biobanks with varying tissue quality, staining intensity, and scanning formats were analyzed. We established an artificial intelligence (AI)-driven iterative procedure to improve the generation of expert-validated annotation datasets for NPs and NFTs thereby increasing annotation quality by >50%. This strategy yielded an expert-validated annotation database with 5013 NPs and 5143 NFTs. We next trained two U-Net convolutional neural networks for detection and segmentation of NPs or NFTs, achieving high accuracy and consistency (mean Dice similarity coefficient: NPs, 0.77; NFTs, 0.81). The workflow showed high generalization performance across different cases. This study serves as a proof-of-concept for the utilization of proprietary image analysis software (Visiopharm) in the automated deep learning segmentation of NPs and NFTs, demonstrating that AI can significantly improve the annotation quality of complex neuropathological features and enable the creation of highly precise models for identifying these markers in AD brain sections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
6.20%
发文量
118
审稿时长
6-12 weeks
期刊介绍: Journal of Neuropathology & Experimental Neurology is the official journal of the American Association of Neuropathologists, Inc. (AANP). The journal publishes peer-reviewed studies on neuropathology and experimental neuroscience, book reviews, letters, and Association news, covering a broad spectrum of fields in basic neuroscience with an emphasis on human neurological diseases. It is written by and for neuropathologists, neurologists, neurosurgeons, pathologists, psychiatrists, and basic neuroscientists from around the world. Publication has been continuous since 1942.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信