Siyue Nie, Yujie Song, Kun Hu, Wei Zu, Fengjiao Zhang, Lixia Chen, Qiang Ma, Zishan Zhou, Shunchang Jiao
{"title":"共同表达 CXCL10 和 IL15 的嵌合抗原受体 T 细胞可通过增加细胞毒性效应细胞的积累和存活率来增强胃癌的抗肿瘤效果。","authors":"Siyue Nie, Yujie Song, Kun Hu, Wei Zu, Fengjiao Zhang, Lixia Chen, Qiang Ma, Zishan Zhou, Shunchang Jiao","doi":"10.1080/2162402X.2024.2358590","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T cells have demonstrated outstanding therapeutic success in hematological malignancies. Yet, their efficacy against solid tumors remains constrained due to inadequate infiltration of cytotoxic T and CAR-T cells in the tumor microenvironment (TME), a factor correlated with poor prognosis in patients with solid tumors. To overcome this limitation, we engineered CAR-T cells to secrete CXCL10 and IL15 (10 × 15 CAR-T), which sustain T cell viability and enhance their recruitment, thereby amplifying the long-term cytotoxic capacity of CAR-T cells in vitro. In a xenograft model employing NUGC4-T21 cells, mice receiving 10 × 15 CAR-T cells showed superior tumor reduction and extended survival rates compared to those treated with second-generation CAR-T cells. Histopathological evaluations indicated a pronounced increase in cytotoxic T cell accumulation in the TME post 10 × 15 CAR-T cell treatment. Therefore, the synergistic secretion of CXCL10 and IL15 in these CAR-T cells enhances T cell recruitment and adaptability within tumor tissues, improving tumor control. This approach may offer a promising strategy for advancing CAR-T therapies in the treatment of solid tumors.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"13 1","pages":"2358590"},"PeriodicalIF":6.5000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135867/pdf/","citationCount":"0","resultStr":"{\"title\":\"CXCL10 and IL15 co-expressing chimeric antigen receptor T cells enhance anti-tumor effects in gastric cancer by increasing cytotoxic effector cell accumulation and survival.\",\"authors\":\"Siyue Nie, Yujie Song, Kun Hu, Wei Zu, Fengjiao Zhang, Lixia Chen, Qiang Ma, Zishan Zhou, Shunchang Jiao\",\"doi\":\"10.1080/2162402X.2024.2358590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chimeric antigen receptor (CAR) T cells have demonstrated outstanding therapeutic success in hematological malignancies. Yet, their efficacy against solid tumors remains constrained due to inadequate infiltration of cytotoxic T and CAR-T cells in the tumor microenvironment (TME), a factor correlated with poor prognosis in patients with solid tumors. To overcome this limitation, we engineered CAR-T cells to secrete CXCL10 and IL15 (10 × 15 CAR-T), which sustain T cell viability and enhance their recruitment, thereby amplifying the long-term cytotoxic capacity of CAR-T cells in vitro. In a xenograft model employing NUGC4-T21 cells, mice receiving 10 × 15 CAR-T cells showed superior tumor reduction and extended survival rates compared to those treated with second-generation CAR-T cells. Histopathological evaluations indicated a pronounced increase in cytotoxic T cell accumulation in the TME post 10 × 15 CAR-T cell treatment. Therefore, the synergistic secretion of CXCL10 and IL15 in these CAR-T cells enhances T cell recruitment and adaptability within tumor tissues, improving tumor control. This approach may offer a promising strategy for advancing CAR-T therapies in the treatment of solid tumors.</p>\",\"PeriodicalId\":48714,\"journal\":{\"name\":\"Oncoimmunology\",\"volume\":\"13 1\",\"pages\":\"2358590\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135867/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncoimmunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/2162402X.2024.2358590\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncoimmunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/2162402X.2024.2358590","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
CXCL10 and IL15 co-expressing chimeric antigen receptor T cells enhance anti-tumor effects in gastric cancer by increasing cytotoxic effector cell accumulation and survival.
Chimeric antigen receptor (CAR) T cells have demonstrated outstanding therapeutic success in hematological malignancies. Yet, their efficacy against solid tumors remains constrained due to inadequate infiltration of cytotoxic T and CAR-T cells in the tumor microenvironment (TME), a factor correlated with poor prognosis in patients with solid tumors. To overcome this limitation, we engineered CAR-T cells to secrete CXCL10 and IL15 (10 × 15 CAR-T), which sustain T cell viability and enhance their recruitment, thereby amplifying the long-term cytotoxic capacity of CAR-T cells in vitro. In a xenograft model employing NUGC4-T21 cells, mice receiving 10 × 15 CAR-T cells showed superior tumor reduction and extended survival rates compared to those treated with second-generation CAR-T cells. Histopathological evaluations indicated a pronounced increase in cytotoxic T cell accumulation in the TME post 10 × 15 CAR-T cell treatment. Therefore, the synergistic secretion of CXCL10 and IL15 in these CAR-T cells enhances T cell recruitment and adaptability within tumor tissues, improving tumor control. This approach may offer a promising strategy for advancing CAR-T therapies in the treatment of solid tumors.
期刊介绍:
OncoImmunology is a dynamic, high-profile, open access journal that comprehensively covers tumor immunology and immunotherapy.
As cancer immunotherapy advances, OncoImmunology is committed to publishing top-tier research encompassing all facets of basic and applied tumor immunology.
The journal covers a wide range of topics, including:
-Basic and translational studies in immunology of both solid and hematological malignancies
-Inflammation, innate and acquired immune responses against cancer
-Mechanisms of cancer immunoediting and immune evasion
-Modern immunotherapies, including immunomodulators, immune checkpoint inhibitors, T-cell, NK-cell, and macrophage engagers, and CAR T cells
-Immunological effects of conventional anticancer therapies.