利用机器学习、图像分析和混合模型对三种自动根结线虫虫卵计数方法进行比较。

IF 4.4 2区 农林科学 Q1 PLANT SCIENCES
Plant disease Pub Date : 2024-09-01 Epub Date: 2024-09-09 DOI:10.1094/PDIS-01-24-0217-SR
Simon P Fraher, Mark Watson, Hoang Nguyen, Savannah Moore, Ramsey S Lewis, Michael Kudenov, G Craig Yencho, Adrienne M Gorny
{"title":"利用机器学习、图像分析和混合模型对三种自动根结线虫虫卵计数方法进行比较。","authors":"Simon P Fraher, Mark Watson, Hoang Nguyen, Savannah Moore, Ramsey S Lewis, Michael Kudenov, G Craig Yencho, Adrienne M Gorny","doi":"10.1094/PDIS-01-24-0217-SR","DOIUrl":null,"url":null,"abstract":"<p><p><i>Meloidogyne</i> spp. (root-knot nematodes [RKNs]) are a major threat to a wide range of agricultural crops worldwide. Breeding crops for RKN resistance is an effective management strategy, yet assaying large numbers of breeding lines requires laborious bioassays that are time-consuming and require experienced researchers. In these bioassays, quantifying nematode eggs through manual counting is considered the current standard for quantifying establishing resistance in plant genotypes. Counting RKN eggs is highly laborious, and even experienced researchers are subject to fatigue or misclassification, leading to potential errors in phenotyping. Here, we present three automated egg counting models that rely on machine learning and image analysis to quantify RKN eggs extracted from tobacco and sweet potato plants. The first method relied on convolutional neural networks trained using annotated images to identify eggs (<i>M. enterolobii</i> <i>R</i><sup>2</sup> = 0.899, <i>M. incognita</i> <i>R</i><sup>2</sup> = 0.927, <i>M. javanica</i> <i>R</i><sup>2</sup> = 0.886), whereas a second contour-based approach used image analysis to identify eggs from their morphological characteristics and did not rely on neural networks (<i>M. enterolobii</i> <i>R</i><sup>2</sup> = 0.977, <i>M. incognita</i> <i>R</i><sup>2</sup> = 0.990, <i>M. javanica</i> <i>R</i><sup>2</sup> = 0.924). A third hybrid model combined these approaches and was able to detect and count eggs nearly as well as human raters (<i>M. enterolobii</i> <i>R</i><sup>2</sup> = 0.985, <i>M. incognita</i> <i>R</i><sup>2</sup> = 0.992, <i>M. javanica</i> <i>R</i><sup>2</sup> = 0.983). These automated counting protocols have the potential to provide significant time and resource savings annually for breeders and nematologists and may be broadly applicable to other nematode species.</p>","PeriodicalId":20063,"journal":{"name":"Plant disease","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comparison of Three Automated Root-Knot Nematode Egg Counting Approaches Using Machine Learning, Image Analysis, and a Hybrid Model.\",\"authors\":\"Simon P Fraher, Mark Watson, Hoang Nguyen, Savannah Moore, Ramsey S Lewis, Michael Kudenov, G Craig Yencho, Adrienne M Gorny\",\"doi\":\"10.1094/PDIS-01-24-0217-SR\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Meloidogyne</i> spp. (root-knot nematodes [RKNs]) are a major threat to a wide range of agricultural crops worldwide. Breeding crops for RKN resistance is an effective management strategy, yet assaying large numbers of breeding lines requires laborious bioassays that are time-consuming and require experienced researchers. In these bioassays, quantifying nematode eggs through manual counting is considered the current standard for quantifying establishing resistance in plant genotypes. Counting RKN eggs is highly laborious, and even experienced researchers are subject to fatigue or misclassification, leading to potential errors in phenotyping. Here, we present three automated egg counting models that rely on machine learning and image analysis to quantify RKN eggs extracted from tobacco and sweet potato plants. The first method relied on convolutional neural networks trained using annotated images to identify eggs (<i>M. enterolobii</i> <i>R</i><sup>2</sup> = 0.899, <i>M. incognita</i> <i>R</i><sup>2</sup> = 0.927, <i>M. javanica</i> <i>R</i><sup>2</sup> = 0.886), whereas a second contour-based approach used image analysis to identify eggs from their morphological characteristics and did not rely on neural networks (<i>M. enterolobii</i> <i>R</i><sup>2</sup> = 0.977, <i>M. incognita</i> <i>R</i><sup>2</sup> = 0.990, <i>M. javanica</i> <i>R</i><sup>2</sup> = 0.924). A third hybrid model combined these approaches and was able to detect and count eggs nearly as well as human raters (<i>M. enterolobii</i> <i>R</i><sup>2</sup> = 0.985, <i>M. incognita</i> <i>R</i><sup>2</sup> = 0.992, <i>M. javanica</i> <i>R</i><sup>2</sup> = 0.983). These automated counting protocols have the potential to provide significant time and resource savings annually for breeders and nematologists and may be broadly applicable to other nematode species.</p>\",\"PeriodicalId\":20063,\"journal\":{\"name\":\"Plant disease\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant disease\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1094/PDIS-01-24-0217-SR\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant disease","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PDIS-01-24-0217-SR","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

根结线虫(Meloidogyne spp.,RKN)是全球多种农作物的主要威胁。培育抗 RKN 的农作物是一种有效的管理策略,但要对大量育种品系进行检测,需要进行费时费力的生物测定,而且需要经验丰富的研究人员。在这些生物测定中,通过人工计数线虫虫卵被认为是量化植物基因型抗性的现行标准。计数 RKN 虫卵非常费力,即使是经验丰富的研究人员也会感到疲劳或分类错误,从而导致表型分析中的潜在错误。在此,我们介绍三种自动虫卵计数模型,它们依靠机器学习和图像分析来量化从烟草和甘薯植物中提取的 RKN 虫卵。第一种方法依靠利用注释图像训练的卷积神经网络来识别虫卵(M. enterolobii R2 = 0.899,M. incognita R2 = 0.927,M. javanica R2 = 0.886),而第二种基于轮廓的方法利用图像分析从虫卵的形态特征来识别虫卵,不依靠神经网络(M. enterolobii R2 = 0.977,M. incognita R2 = 0.990,M. javanica R2 = 0.924)。第三种混合模型结合了这些方法,在检测和计数虫卵方面几乎与人类评分员一样出色(M. enterolobii R2 = 0.985,M. incognita R2 = 0.992,M. javanica R2 = 0.983)。这些自动计数协议有可能每年为育种者和线虫学家节省大量时间和资源,并可广泛应用于其他线虫物种。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparison of Three Automated Root-Knot Nematode Egg Counting Approaches Using Machine Learning, Image Analysis, and a Hybrid Model.

Meloidogyne spp. (root-knot nematodes [RKNs]) are a major threat to a wide range of agricultural crops worldwide. Breeding crops for RKN resistance is an effective management strategy, yet assaying large numbers of breeding lines requires laborious bioassays that are time-consuming and require experienced researchers. In these bioassays, quantifying nematode eggs through manual counting is considered the current standard for quantifying establishing resistance in plant genotypes. Counting RKN eggs is highly laborious, and even experienced researchers are subject to fatigue or misclassification, leading to potential errors in phenotyping. Here, we present three automated egg counting models that rely on machine learning and image analysis to quantify RKN eggs extracted from tobacco and sweet potato plants. The first method relied on convolutional neural networks trained using annotated images to identify eggs (M. enterolobii R2 = 0.899, M. incognita R2 = 0.927, M. javanica R2 = 0.886), whereas a second contour-based approach used image analysis to identify eggs from their morphological characteristics and did not rely on neural networks (M. enterolobii R2 = 0.977, M. incognita R2 = 0.990, M. javanica R2 = 0.924). A third hybrid model combined these approaches and was able to detect and count eggs nearly as well as human raters (M. enterolobii R2 = 0.985, M. incognita R2 = 0.992, M. javanica R2 = 0.983). These automated counting protocols have the potential to provide significant time and resource savings annually for breeders and nematologists and may be broadly applicable to other nematode species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant disease
Plant disease 农林科学-植物科学
CiteScore
5.10
自引率
13.30%
发文量
1993
审稿时长
2 months
期刊介绍: Plant Disease is the leading international journal for rapid reporting of research on new, emerging, and established plant diseases. The journal publishes papers that describe basic and applied research focusing on practical aspects of disease diagnosis, development, and management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信