褪黑素可减轻顺铂诱导的大鼠认知障碍并改善海马树突棘密度。

IF 1.6 4区 医学 Q4 NEUROSCIENCES
Neuroreport Pub Date : 2024-07-01 Epub Date: 2024-05-16 DOI:10.1097/WNR.0000000000002049
Shahd Qutifan, Tareq Saleh, Nisreen Abu Shahin, Maha ELBeltagy, Fatimah Obeidat, Duaa Qattan, Heba Kalbouneh, Noor A Barakat, Mohammad Alsalem
{"title":"褪黑素可减轻顺铂诱导的大鼠认知障碍并改善海马树突棘密度。","authors":"Shahd Qutifan, Tareq Saleh, Nisreen Abu Shahin, Maha ELBeltagy, Fatimah Obeidat, Duaa Qattan, Heba Kalbouneh, Noor A Barakat, Mohammad Alsalem","doi":"10.1097/WNR.0000000000002049","DOIUrl":null,"url":null,"abstract":"<p><p>Cisplatin-induced cognitive impairment (chemobrain) affects a considerable percentage of cancer patients and has no established pharmacological treatment. Chemobrain can be associated with neuroinflammation and oxidative stress. Melatonin, a pineal hormone, is known to have antioxidant, anti-inflammatory and neuroprotective potential. In this study, we investigated cisplatin-induced cognitive impairment in rats and whether melatonin can improve or reverse this impairment. Behavioral testing involved measuring working memory using the novel location recognition test (NLRT) under conditions of cisplatin or cisplatin + melatonin treatment, followed by the collection of rats' brains. The brains were subsequently stained with Golgi-Cox stain and then the hippocampus area CA3 of each one was examined, and dendritic spine density was calculated. Treatment with cisplatin resulted in deficits in the rats' performance in the NLRT (P < 0.05). These deficits were prevented by the coadministration of melatonin (P < 0.05). Cisplatin also reduced the density of dendritic spines in the hippocampus (P < 0.0001), specifically CA3 area, while the coadministration of melatonin significantly reversed this reduction (P < 0.001). This study showed that melatonin can ameliorate cisplatin-induced spatial memory deficits and dendritic spines density abnormalities in rats. Given that melatonin is a safe and wildly used supplement, it is feasible to explore its use as a palliative intervention in cancer treatment.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Melatonin mitigates cisplatin-induced cognitive impairment in rats and improves hippocampal dendritic spine density.\",\"authors\":\"Shahd Qutifan, Tareq Saleh, Nisreen Abu Shahin, Maha ELBeltagy, Fatimah Obeidat, Duaa Qattan, Heba Kalbouneh, Noor A Barakat, Mohammad Alsalem\",\"doi\":\"10.1097/WNR.0000000000002049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cisplatin-induced cognitive impairment (chemobrain) affects a considerable percentage of cancer patients and has no established pharmacological treatment. Chemobrain can be associated with neuroinflammation and oxidative stress. Melatonin, a pineal hormone, is known to have antioxidant, anti-inflammatory and neuroprotective potential. In this study, we investigated cisplatin-induced cognitive impairment in rats and whether melatonin can improve or reverse this impairment. Behavioral testing involved measuring working memory using the novel location recognition test (NLRT) under conditions of cisplatin or cisplatin + melatonin treatment, followed by the collection of rats' brains. The brains were subsequently stained with Golgi-Cox stain and then the hippocampus area CA3 of each one was examined, and dendritic spine density was calculated. Treatment with cisplatin resulted in deficits in the rats' performance in the NLRT (P < 0.05). These deficits were prevented by the coadministration of melatonin (P < 0.05). Cisplatin also reduced the density of dendritic spines in the hippocampus (P < 0.0001), specifically CA3 area, while the coadministration of melatonin significantly reversed this reduction (P < 0.001). This study showed that melatonin can ameliorate cisplatin-induced spatial memory deficits and dendritic spines density abnormalities in rats. Given that melatonin is a safe and wildly used supplement, it is feasible to explore its use as a palliative intervention in cancer treatment.</p>\",\"PeriodicalId\":19213,\"journal\":{\"name\":\"Neuroreport\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroreport\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/WNR.0000000000002049\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002049","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

顺铂诱发的认知障碍(化疗脑)影响着相当一部分癌症患者,目前尚无成熟的药物治疗方法。化脑可能与神经炎症和氧化应激有关。褪黑激素是一种松果体激素,具有抗氧化、抗炎和保护神经的作用。在这项研究中,我们调查了顺铂诱导的大鼠认知功能损害,以及褪黑激素是否能改善或逆转这种损害。行为测试包括在顺铂或顺铂+褪黑激素治疗条件下使用新位置识别测试(NLRT)测量工作记忆,然后收集大鼠大脑。随后用高尔基-考克斯染色法对大鼠大脑进行染色,然后检查每只大鼠的海马CA3区,并计算树突棘密度。顺铂治疗会导致大鼠在 NLRT 中的表现出现缺陷(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Melatonin mitigates cisplatin-induced cognitive impairment in rats and improves hippocampal dendritic spine density.

Cisplatin-induced cognitive impairment (chemobrain) affects a considerable percentage of cancer patients and has no established pharmacological treatment. Chemobrain can be associated with neuroinflammation and oxidative stress. Melatonin, a pineal hormone, is known to have antioxidant, anti-inflammatory and neuroprotective potential. In this study, we investigated cisplatin-induced cognitive impairment in rats and whether melatonin can improve or reverse this impairment. Behavioral testing involved measuring working memory using the novel location recognition test (NLRT) under conditions of cisplatin or cisplatin + melatonin treatment, followed by the collection of rats' brains. The brains were subsequently stained with Golgi-Cox stain and then the hippocampus area CA3 of each one was examined, and dendritic spine density was calculated. Treatment with cisplatin resulted in deficits in the rats' performance in the NLRT (P < 0.05). These deficits were prevented by the coadministration of melatonin (P < 0.05). Cisplatin also reduced the density of dendritic spines in the hippocampus (P < 0.0001), specifically CA3 area, while the coadministration of melatonin significantly reversed this reduction (P < 0.001). This study showed that melatonin can ameliorate cisplatin-induced spatial memory deficits and dendritic spines density abnormalities in rats. Given that melatonin is a safe and wildly used supplement, it is feasible to explore its use as a palliative intervention in cancer treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroreport
Neuroreport 医学-神经科学
CiteScore
3.20
自引率
0.00%
发文量
150
审稿时长
1 months
期刊介绍: NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool. The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works. We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信