利用基于 OPM 的灵活多通道 MEG 系统测量人类听觉诱发电场

IF 2.5 4区 医学 Q3 NEUROSCIENCES
Xin Zhang, Yan Chang, Hui Wang, Yin Zhang, Tao Hu, Xiao-Yu Feng, Ming-Kang Zhang, Ze-Kun Yao, Chun-Qiao Chen, Jia-Yu Xu, Fang-Yue Fu, Qing-Qian Guo, Jian-Bing Zhu, Hai-Qun Xie, Xiao-Dong Yang
{"title":"利用基于 OPM 的灵活多通道 MEG 系统测量人类听觉诱发电场","authors":"Xin Zhang, Yan Chang, Hui Wang, Yin Zhang, Tao Hu, Xiao-Yu Feng, Ming-Kang Zhang, Ze-Kun Yao, Chun-Qiao Chen, Jia-Yu Xu, Fang-Yue Fu, Qing-Qian Guo, Jian-Bing Zhu, Hai-Qun Xie, Xiao-Dong Yang","doi":"10.31083/j.jin2305093","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Magnetoencephalography (MEG) is a non-invasive imaging technique for directly measuring the external magnetic field generated from synchronously activated pyramidal neurons in the brain. The optically pumped magnetometer (OPM) is known for its less expensive, non-cryogenic, movable and user-friendly custom-design provides the potential for a change in functional neuroimaging based on MEG.</p><p><strong>Methods: </strong>An array of OPMs covering the opposite sides of a subject's head is placed inside a magnetically shielded room (MSR) and responses evoked from the auditory cortices are measured.</p><p><strong>Results: </strong>High signal-to-noise ratio auditory evoked response fields (AEFs) were detected by a wearable OPM-MEG system in a MSR, for which a flexible helmet was specially designed to minimize the sensor-to-head distance, along with a set of bi-planar coils developed for background field and gradient nulling. Neuronal current sources activated in AEF experiments were localized and the auditory cortices showed the highest activities. Performance of the hybrid optically pumped magnetometer-magnetoencephalography/electroencephalography (OPM-MEG/EEG) system was also assessed.</p><p><strong>Conclusions: </strong>The multi-channel OPM-MEG system performs well in a custom built MSR equipped with bi-planar coils and detects human AEFs with a flexible helmet. Moreover, the similarities and differences of auditory evoked potentials (AEPs) and AEFs are discussed, while the operation of OPM-MEG sensors in conjunction with EEG electrodes provides an encouraging combination for the exploration of hybrid OPM-MEG/EEG systems.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"23 5","pages":"93"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring Human Auditory Evoked Fields with a Flexible Multi-Channel OPM-Based MEG System.\",\"authors\":\"Xin Zhang, Yan Chang, Hui Wang, Yin Zhang, Tao Hu, Xiao-Yu Feng, Ming-Kang Zhang, Ze-Kun Yao, Chun-Qiao Chen, Jia-Yu Xu, Fang-Yue Fu, Qing-Qian Guo, Jian-Bing Zhu, Hai-Qun Xie, Xiao-Dong Yang\",\"doi\":\"10.31083/j.jin2305093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Magnetoencephalography (MEG) is a non-invasive imaging technique for directly measuring the external magnetic field generated from synchronously activated pyramidal neurons in the brain. The optically pumped magnetometer (OPM) is known for its less expensive, non-cryogenic, movable and user-friendly custom-design provides the potential for a change in functional neuroimaging based on MEG.</p><p><strong>Methods: </strong>An array of OPMs covering the opposite sides of a subject's head is placed inside a magnetically shielded room (MSR) and responses evoked from the auditory cortices are measured.</p><p><strong>Results: </strong>High signal-to-noise ratio auditory evoked response fields (AEFs) were detected by a wearable OPM-MEG system in a MSR, for which a flexible helmet was specially designed to minimize the sensor-to-head distance, along with a set of bi-planar coils developed for background field and gradient nulling. Neuronal current sources activated in AEF experiments were localized and the auditory cortices showed the highest activities. Performance of the hybrid optically pumped magnetometer-magnetoencephalography/electroencephalography (OPM-MEG/EEG) system was also assessed.</p><p><strong>Conclusions: </strong>The multi-channel OPM-MEG system performs well in a custom built MSR equipped with bi-planar coils and detects human AEFs with a flexible helmet. Moreover, the similarities and differences of auditory evoked potentials (AEPs) and AEFs are discussed, while the operation of OPM-MEG sensors in conjunction with EEG electrodes provides an encouraging combination for the exploration of hybrid OPM-MEG/EEG systems.</p>\",\"PeriodicalId\":16160,\"journal\":{\"name\":\"Journal of integrative neuroscience\",\"volume\":\"23 5\",\"pages\":\"93\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of integrative neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.31083/j.jin2305093\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/j.jin2305093","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

背景:脑磁图(MEG)是一种无创成像技术,可直接测量大脑中同步激活的锥体神经元产生的外部磁场。光学泵浦磁力计(OPM)以其价格低廉、无致冷剂、可移动和用户友好的定制设计而著称,为基于 MEG 的功能性神经成像提供了变革的可能性:方法:将覆盖受试者头部两侧的 OPM 阵列置于磁屏蔽室(MSR)内,测量从听觉皮层诱发的反应:在磁屏蔽室内,通过可穿戴 OPM-MEG 系统检测到了高信噪比的听觉诱发反应场 (AEF),为此专门设计了一个灵活的头盔,以尽量减少传感器到头部的距离,同时还开发了一套双平面线圈,用于背景场和梯度归零。在 AEF 实验中激活的神经元电流源被定位,听觉皮层显示出最高的活动。此外,还评估了光学泵浦磁力计-脑磁图/脑电图(OPM-MEG/EEG)混合系统的性能:结论:多通道 OPM-MEG 系统在配备双平面线圈的定制 MSR 中表现良好,并能在灵活的头盔中检测到人体 AEF。此外,还讨论了听觉诱发电位 (AEP) 和 AEF 的异同,而 OPM-MEG 传感器与脑电图电极的结合使用为探索 OPM-MEG/EEG 混合系统提供了令人鼓舞的组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring Human Auditory Evoked Fields with a Flexible Multi-Channel OPM-Based MEG System.

Background: Magnetoencephalography (MEG) is a non-invasive imaging technique for directly measuring the external magnetic field generated from synchronously activated pyramidal neurons in the brain. The optically pumped magnetometer (OPM) is known for its less expensive, non-cryogenic, movable and user-friendly custom-design provides the potential for a change in functional neuroimaging based on MEG.

Methods: An array of OPMs covering the opposite sides of a subject's head is placed inside a magnetically shielded room (MSR) and responses evoked from the auditory cortices are measured.

Results: High signal-to-noise ratio auditory evoked response fields (AEFs) were detected by a wearable OPM-MEG system in a MSR, for which a flexible helmet was specially designed to minimize the sensor-to-head distance, along with a set of bi-planar coils developed for background field and gradient nulling. Neuronal current sources activated in AEF experiments were localized and the auditory cortices showed the highest activities. Performance of the hybrid optically pumped magnetometer-magnetoencephalography/electroencephalography (OPM-MEG/EEG) system was also assessed.

Conclusions: The multi-channel OPM-MEG system performs well in a custom built MSR equipped with bi-planar coils and detects human AEFs with a flexible helmet. Moreover, the similarities and differences of auditory evoked potentials (AEPs) and AEFs are discussed, while the operation of OPM-MEG sensors in conjunction with EEG electrodes provides an encouraging combination for the exploration of hybrid OPM-MEG/EEG systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
173
审稿时长
2 months
期刊介绍: JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信