微RNA在Aspongopus chinensis Dallas(半翅目:Dinidoridae)休眠期和非休眠期性腺中的差异表达:对生殖控制的影响。

IF 2.1 3区 农林科学 Q1 ENTOMOLOGY
Zhiyong Yin, Yufang Yan, Samiullah Khan, Renlian Cai, Haiyin Li, Jianjun Guo
{"title":"微RNA在Aspongopus chinensis Dallas(半翅目:Dinidoridae)休眠期和非休眠期性腺中的差异表达:对生殖控制的影响。","authors":"Zhiyong Yin, Yufang Yan, Samiullah Khan, Renlian Cai, Haiyin Li, Jianjun Guo","doi":"10.1093/jisesa/ieae021","DOIUrl":null,"url":null,"abstract":"<p><p>Aspongopus chinensis Dallas, 1851 (Hemiptera: Dinidoridae), an edible and medicinal insect, usually found in China and Southeast Asia, offers substantial potential for various applications. The reproductive cycle of this particular insect occurs annually because of reproductive diapause, leading to inadequate utilization of available natural resources. Despite its considerable ecological importance, the precise mechanisms underlying diapause in A. chinensis are not yet well understood. In this study, we conducted an analysis of comparing the microRNA (miRNA) regulation in the diapause and non-diapause gonads of A. chinensis and identified 303 differentially expressed miRNAs, among which, compared with the diapause group, 76 miRNAs were upregulated and 227 miRNAs downregulated. The results, regarding the Enrichment analysis of miRNA-targeted genes, showed their involvement in several essential biological processes, such as lipid anabolism, energy metabolism, and gonadal growth. Interestingly, we observed that the ATP-binding cassette pathway is the only enriched pathway, demonstrating the capability of these targeted miRNAs to regulate the reproductive diapause of A. chinensis through the above essential pathway. The current study provided the role of gonadal miRNA expression in the control of reproductive diapause in A. chinensis, the specific regulatory mechanism behind this event remained unknown and needed more investigation.</p>","PeriodicalId":16156,"journal":{"name":"Journal of Insect Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135359/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differential expression of microRNAs in diapause and non-diapause gonads of Aspongopus chinensis Dallas (Hemiptera: Dinidoridae): implications for reproductive control.\",\"authors\":\"Zhiyong Yin, Yufang Yan, Samiullah Khan, Renlian Cai, Haiyin Li, Jianjun Guo\",\"doi\":\"10.1093/jisesa/ieae021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aspongopus chinensis Dallas, 1851 (Hemiptera: Dinidoridae), an edible and medicinal insect, usually found in China and Southeast Asia, offers substantial potential for various applications. The reproductive cycle of this particular insect occurs annually because of reproductive diapause, leading to inadequate utilization of available natural resources. Despite its considerable ecological importance, the precise mechanisms underlying diapause in A. chinensis are not yet well understood. In this study, we conducted an analysis of comparing the microRNA (miRNA) regulation in the diapause and non-diapause gonads of A. chinensis and identified 303 differentially expressed miRNAs, among which, compared with the diapause group, 76 miRNAs were upregulated and 227 miRNAs downregulated. The results, regarding the Enrichment analysis of miRNA-targeted genes, showed their involvement in several essential biological processes, such as lipid anabolism, energy metabolism, and gonadal growth. Interestingly, we observed that the ATP-binding cassette pathway is the only enriched pathway, demonstrating the capability of these targeted miRNAs to regulate the reproductive diapause of A. chinensis through the above essential pathway. The current study provided the role of gonadal miRNA expression in the control of reproductive diapause in A. chinensis, the specific regulatory mechanism behind this event remained unknown and needed more investigation.</p>\",\"PeriodicalId\":16156,\"journal\":{\"name\":\"Journal of Insect Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11135359/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/jisesa/ieae021\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/jisesa/ieae021","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Aspongopus chinensis Dallas, 1851(半翅目:Dinidoridae)是一种食用和药用昆虫,通常产于中国和东南亚,具有多种应用潜力。这种特殊昆虫的繁殖周期每年都会发生,因为其繁殖停滞,导致对现有自然资源的利用不足。尽管这种昆虫在生态学上具有相当重要的意义,但人们对其休眠的确切机制还不甚了解。本研究比较了箭毒生殖腺中的微RNA(miRNA)调控,发现了303个差异表达的miRNA,其中76个miRNA上调,227个miRNA下调。miRNA靶向基因的富集分析结果表明,它们参与了几个重要的生物学过程,如脂质合成代谢、能量代谢和性腺生长。有趣的是,我们观察到 ATP 结合盒通路是唯一富集的通路,这表明这些靶向 miRNAs 能够通过上述重要通路调控五步蛇的生殖休眠。目前的研究提供了性腺 miRNA 表达在控制五步蛇生殖性休眠中的作用,但这一事件背后的具体调控机制仍然未知,需要更多的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential expression of microRNAs in diapause and non-diapause gonads of Aspongopus chinensis Dallas (Hemiptera: Dinidoridae): implications for reproductive control.

Aspongopus chinensis Dallas, 1851 (Hemiptera: Dinidoridae), an edible and medicinal insect, usually found in China and Southeast Asia, offers substantial potential for various applications. The reproductive cycle of this particular insect occurs annually because of reproductive diapause, leading to inadequate utilization of available natural resources. Despite its considerable ecological importance, the precise mechanisms underlying diapause in A. chinensis are not yet well understood. In this study, we conducted an analysis of comparing the microRNA (miRNA) regulation in the diapause and non-diapause gonads of A. chinensis and identified 303 differentially expressed miRNAs, among which, compared with the diapause group, 76 miRNAs were upregulated and 227 miRNAs downregulated. The results, regarding the Enrichment analysis of miRNA-targeted genes, showed their involvement in several essential biological processes, such as lipid anabolism, energy metabolism, and gonadal growth. Interestingly, we observed that the ATP-binding cassette pathway is the only enriched pathway, demonstrating the capability of these targeted miRNAs to regulate the reproductive diapause of A. chinensis through the above essential pathway. The current study provided the role of gonadal miRNA expression in the control of reproductive diapause in A. chinensis, the specific regulatory mechanism behind this event remained unknown and needed more investigation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Insect Science
Journal of Insect Science 生物-昆虫学
CiteScore
3.70
自引率
0.00%
发文量
80
审稿时长
7.5 months
期刊介绍: The Journal of Insect Science was founded with support from the University of Arizona library in 2001 by Dr. Henry Hagedorn, who served as editor-in-chief until his death in January 2014. The Entomological Society of America was very pleased to add the Journal of Insect Science to its publishing portfolio in 2014. The fully open access journal publishes papers in all aspects of the biology of insects and other arthropods from the molecular to the ecological, and their agricultural and medical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信