Janaina Marques do Nascimento, Samuel Vieira Brito, Adonias Aphoena Martins Teixeira, Renata Guimarães Frederico, Arlan Araujo Rodrigues, José Gracione do Nascimento Sousa Filho, Ivo Alexandre Leme da Cunha
{"title":"南美洲线虫(线虫纲:Trichostrongylidae)的潜在分布模型。","authors":"Janaina Marques do Nascimento, Samuel Vieira Brito, Adonias Aphoena Martins Teixeira, Renata Guimarães Frederico, Arlan Araujo Rodrigues, José Gracione do Nascimento Sousa Filho, Ivo Alexandre Leme da Cunha","doi":"10.1007/s00436-024-08247-5","DOIUrl":null,"url":null,"abstract":"<p><p>The species Haemonchus contortus occurs in many regions worldwide, mainly parasitising small ruminants and economically impacting animal production. Climate change is considered a driving force for the risk of diseases caused by helminths and can also affect relationships between parasites and their hosts, with the potential to cause losses in both animal production and biodiversity in general. The aim of this study was to model the potential distribution of H. contortus in South America. We used MaxEnt to perform the analyses and describe the contribution of important bioclimatic variables involved in the species distribution. Our results show that H. contortus colonised most of the areas with habitats that suit the species' environmental requirements and that this parasite presents habitat suitability in a future scenario. Understanding the effects of climate change on the occurrence and distribution of parasite species is essential for monitoring these pathogens, in addition to predicting the areas that tend to present future parasite outbreaks and identify opportunities to mitigate the impacts of the emergence of diseases caused by these organisms.</p>","PeriodicalId":19968,"journal":{"name":"Parasitology Research","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential distribution modelling for Haemonchus contortus (Nematoda: Trichostrongylidae) in South America.\",\"authors\":\"Janaina Marques do Nascimento, Samuel Vieira Brito, Adonias Aphoena Martins Teixeira, Renata Guimarães Frederico, Arlan Araujo Rodrigues, José Gracione do Nascimento Sousa Filho, Ivo Alexandre Leme da Cunha\",\"doi\":\"10.1007/s00436-024-08247-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The species Haemonchus contortus occurs in many regions worldwide, mainly parasitising small ruminants and economically impacting animal production. Climate change is considered a driving force for the risk of diseases caused by helminths and can also affect relationships between parasites and their hosts, with the potential to cause losses in both animal production and biodiversity in general. The aim of this study was to model the potential distribution of H. contortus in South America. We used MaxEnt to perform the analyses and describe the contribution of important bioclimatic variables involved in the species distribution. Our results show that H. contortus colonised most of the areas with habitats that suit the species' environmental requirements and that this parasite presents habitat suitability in a future scenario. Understanding the effects of climate change on the occurrence and distribution of parasite species is essential for monitoring these pathogens, in addition to predicting the areas that tend to present future parasite outbreaks and identify opportunities to mitigate the impacts of the emergence of diseases caused by these organisms.</p>\",\"PeriodicalId\":19968,\"journal\":{\"name\":\"Parasitology Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parasitology Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00436-024-08247-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasitology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00436-024-08247-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Potential distribution modelling for Haemonchus contortus (Nematoda: Trichostrongylidae) in South America.
The species Haemonchus contortus occurs in many regions worldwide, mainly parasitising small ruminants and economically impacting animal production. Climate change is considered a driving force for the risk of diseases caused by helminths and can also affect relationships between parasites and their hosts, with the potential to cause losses in both animal production and biodiversity in general. The aim of this study was to model the potential distribution of H. contortus in South America. We used MaxEnt to perform the analyses and describe the contribution of important bioclimatic variables involved in the species distribution. Our results show that H. contortus colonised most of the areas with habitats that suit the species' environmental requirements and that this parasite presents habitat suitability in a future scenario. Understanding the effects of climate change on the occurrence and distribution of parasite species is essential for monitoring these pathogens, in addition to predicting the areas that tend to present future parasite outbreaks and identify opportunities to mitigate the impacts of the emergence of diseases caused by these organisms.
期刊介绍:
The journal Parasitology Research covers the latest developments in parasitology across a variety of disciplines, including biology, medicine and veterinary medicine. Among many topics discussed are chemotherapy and control of parasitic disease, and the relationship of host and parasite.
Other coverage includes: Protozoology, Helminthology, Entomology; Morphology (incl. Pathomorphology, Ultrastructure); Biochemistry, Physiology including Pathophysiology;
Parasite-Host-Relationships including Immunology and Host Specificity; life history, ecology and epidemiology; and Diagnosis, Chemotherapy and Control of Parasitic Diseases.