Suzanne L. Chmilar, Amanda C. Luzardo, Priyanka Dutt, Abbe Pawluk, Victoria C. Thwaites, Robert A. Laird
{"title":"限制热量可延长克隆植物的寿命","authors":"Suzanne L. Chmilar, Amanda C. Luzardo, Priyanka Dutt, Abbe Pawluk, Victoria C. Thwaites, Robert A. Laird","doi":"10.1111/ele.14444","DOIUrl":null,"url":null,"abstract":"<p>When subjected to dietary caloric restriction (CR), individual animals often outlive well-fed conspecifics. Here, we address whether CR also extends lifespan in plants. Whereas caloric intake in animals comes from ingestion, in plants it derives from photosynthesis. Thus, factors that reduce photosynthesis, such as reduced light intensity, can induce CR. In two lab experiments investigating the aquatic macrophyte <i>Lemna minor</i>, we tracked hundreds of individuals longitudinally, with light intensity—and hence, CR—manipulated using neutral-density filters. In both experiments, CR dramatically increased lifespan through a process of temporal scaling. Moreover, the magnitude of lifespan extension accorded with the assumptions that (a) light intensity positively relates to photosynthesis following Michaelis–Menten kinetics, and (b) photosynthesis negatively relates to lifespan via a power law. Our results emphasize that CR-mediated lifespan extension applies to autotrophs as well as heterotrophs, and suggest that variation in light intensity has quantitatively predictable effects on plant aging trajectories.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 6","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14444","citationCount":"0","resultStr":"{\"title\":\"Caloric restriction extends lifespan in a clonal plant\",\"authors\":\"Suzanne L. Chmilar, Amanda C. Luzardo, Priyanka Dutt, Abbe Pawluk, Victoria C. Thwaites, Robert A. Laird\",\"doi\":\"10.1111/ele.14444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When subjected to dietary caloric restriction (CR), individual animals often outlive well-fed conspecifics. Here, we address whether CR also extends lifespan in plants. Whereas caloric intake in animals comes from ingestion, in plants it derives from photosynthesis. Thus, factors that reduce photosynthesis, such as reduced light intensity, can induce CR. In two lab experiments investigating the aquatic macrophyte <i>Lemna minor</i>, we tracked hundreds of individuals longitudinally, with light intensity—and hence, CR—manipulated using neutral-density filters. In both experiments, CR dramatically increased lifespan through a process of temporal scaling. Moreover, the magnitude of lifespan extension accorded with the assumptions that (a) light intensity positively relates to photosynthesis following Michaelis–Menten kinetics, and (b) photosynthesis negatively relates to lifespan via a power law. Our results emphasize that CR-mediated lifespan extension applies to autotrophs as well as heterotrophs, and suggest that variation in light intensity has quantitatively predictable effects on plant aging trajectories.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"27 6\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14444\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.14444\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14444","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
当受到饮食热量限制(CR)时,动物个体的寿命往往会超过吃得好的同种动物。在这里,我们将探讨食物热量限制是否也能延长植物的寿命。动物的热量摄入来自摄取,而植物的热量摄入则来自光合作用。因此,减少光合作用的因素(如降低光照强度)会诱发 "逆境生长"。在研究水生大型藻类 Lemna minor 的两个实验室实验中,我们纵向追踪了数百个个体,利用中性密度滤光片调节光照强度,从而调节 CR。在这两项实验中,CR 通过时间缩放过程显著延长了寿命。此外,寿命延长的幅度符合以下假设:(a) 光照强度与光合作用呈正相关,遵循迈克尔-门顿动力学;(b) 光合作用与寿命呈负相关,遵循幂律。我们的研究结果强调,CR 介导的寿命延长既适用于自养生物,也适用于异养生物,并表明光照强度的变化对植物衰老轨迹具有可预测的定量影响。
Caloric restriction extends lifespan in a clonal plant
When subjected to dietary caloric restriction (CR), individual animals often outlive well-fed conspecifics. Here, we address whether CR also extends lifespan in plants. Whereas caloric intake in animals comes from ingestion, in plants it derives from photosynthesis. Thus, factors that reduce photosynthesis, such as reduced light intensity, can induce CR. In two lab experiments investigating the aquatic macrophyte Lemna minor, we tracked hundreds of individuals longitudinally, with light intensity—and hence, CR—manipulated using neutral-density filters. In both experiments, CR dramatically increased lifespan through a process of temporal scaling. Moreover, the magnitude of lifespan extension accorded with the assumptions that (a) light intensity positively relates to photosynthesis following Michaelis–Menten kinetics, and (b) photosynthesis negatively relates to lifespan via a power law. Our results emphasize that CR-mediated lifespan extension applies to autotrophs as well as heterotrophs, and suggest that variation in light intensity has quantitatively predictable effects on plant aging trajectories.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.