混合表面改性和块状掺杂使乏钴酸锂阴极能在高压下工作。

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhenzhen Liu, Miaomiao Han, Shengbo Zhang, Huaimeng Li, Xi Wu, Zhen Fu, Haimin Zhang, Guozhong Wang, Yunxia Zhang
{"title":"混合表面改性和块状掺杂使乏钴酸锂阴极能在高压下工作。","authors":"Zhenzhen Liu,&nbsp;Miaomiao Han,&nbsp;Shengbo Zhang,&nbsp;Huaimeng Li,&nbsp;Xi Wu,&nbsp;Zhen Fu,&nbsp;Haimin Zhang,&nbsp;Guozhong Wang,&nbsp;Yunxia Zhang","doi":"10.1002/adma.202404188","DOIUrl":null,"url":null,"abstract":"<p>The emerging market demand for high-energy-density of energy storage devices is pushing the disposal of end-of-life LiCoO<sub>2</sub> (LCO) to shift toward sustainable upgrading into structurally stable high-voltage cathode materials. Herein, an integrated bulk and surface commodification strategy is proposed to render spent LCO (S-LCO) to operate at high voltages, involving bulk Mn doping, near surface P gradient doping, and Li<sub>3</sub>PO<sub>4</sub>/CoP (LPO/CP) coating on the LCO surface to yield upcycled LCO (defined as MP-LCO@LPO/CP). Benefiting from hybrid surface coating with Li<sup>+</sup>-conductive Li<sub>3</sub>PO<sub>4</sub> (LPO) and electron conductive CoP (CP) coupled with Mn and P co-doping, the optimized MP-LCO@LPO/CP cathode exhibits enhanced high-voltage performance, delivering an initial discharge capacity of 218.8 mAh g<sup>−1</sup> at 0.2 C with excellent capacity retention of 80.9% (0.5 C) after 200 cycles at a cut-off voltage of 4.6 V, along with 96.3% of capacity retention over 100 cycles at 4.5 V. These findings may afford meaningful construction for the upcycling of commercial S-LCO into next-generation upmarket cathode materials through the elaborate surface and bulk modification design.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid Surface Modification and Bulk Doping Enable Spent LiCoO2 Cathodes for High-Voltage Operation\",\"authors\":\"Zhenzhen Liu,&nbsp;Miaomiao Han,&nbsp;Shengbo Zhang,&nbsp;Huaimeng Li,&nbsp;Xi Wu,&nbsp;Zhen Fu,&nbsp;Haimin Zhang,&nbsp;Guozhong Wang,&nbsp;Yunxia Zhang\",\"doi\":\"10.1002/adma.202404188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The emerging market demand for high-energy-density of energy storage devices is pushing the disposal of end-of-life LiCoO<sub>2</sub> (LCO) to shift toward sustainable upgrading into structurally stable high-voltage cathode materials. Herein, an integrated bulk and surface commodification strategy is proposed to render spent LCO (S-LCO) to operate at high voltages, involving bulk Mn doping, near surface P gradient doping, and Li<sub>3</sub>PO<sub>4</sub>/CoP (LPO/CP) coating on the LCO surface to yield upcycled LCO (defined as MP-LCO@LPO/CP). Benefiting from hybrid surface coating with Li<sup>+</sup>-conductive Li<sub>3</sub>PO<sub>4</sub> (LPO) and electron conductive CoP (CP) coupled with Mn and P co-doping, the optimized MP-LCO@LPO/CP cathode exhibits enhanced high-voltage performance, delivering an initial discharge capacity of 218.8 mAh g<sup>−1</sup> at 0.2 C with excellent capacity retention of 80.9% (0.5 C) after 200 cycles at a cut-off voltage of 4.6 V, along with 96.3% of capacity retention over 100 cycles at 4.5 V. These findings may afford meaningful construction for the upcycling of commercial S-LCO into next-generation upmarket cathode materials through the elaborate surface and bulk modification design.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202404188\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202404188","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

市场对高能量密度储能设备的需求不断增长,推动了报废钴酸锂(LCO)的处理向可持续升级为结构稳定的高压阴极材料的方向转变。在此,我们提出了一种综合的体质和表面商品化策略,以将废旧钴酸锂(S-LCO)转化为可在高电压下工作的材料,其中包括体质锰掺杂、近表面磷梯度掺杂以及在钴酸锂表面涂覆 Li3PO4/CoP (LPO/CP),从而产生可循环利用的钴酸锂(定义为 MP-LCO@LPO/CP)。得益于Li+导电的Li3PO4和电子导电的CoP混合表面涂层以及锰和磷的共掺杂,优化的MP-LCO@LPO/CP阴极表现出更高的高压性能,在0.2 C时的初始放电容量为218.8 mAh g-1,在4.6 V截止电压下循环200次后容量保持率为80.9%(0.5 C),在4.5 V下循环100次后容量保持率为96.3%。通过精心的表面和体质改性设计,我们的研究结果可能会为将商用 S-LCO 升级为下一代高端正极材料提供有意义的构造。本文受版权保护。保留所有权利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hybrid Surface Modification and Bulk Doping Enable Spent LiCoO2 Cathodes for High-Voltage Operation

Hybrid Surface Modification and Bulk Doping Enable Spent LiCoO2 Cathodes for High-Voltage Operation

The emerging market demand for high-energy-density of energy storage devices is pushing the disposal of end-of-life LiCoO2 (LCO) to shift toward sustainable upgrading into structurally stable high-voltage cathode materials. Herein, an integrated bulk and surface commodification strategy is proposed to render spent LCO (S-LCO) to operate at high voltages, involving bulk Mn doping, near surface P gradient doping, and Li3PO4/CoP (LPO/CP) coating on the LCO surface to yield upcycled LCO (defined as MP-LCO@LPO/CP). Benefiting from hybrid surface coating with Li+-conductive Li3PO4 (LPO) and electron conductive CoP (CP) coupled with Mn and P co-doping, the optimized MP-LCO@LPO/CP cathode exhibits enhanced high-voltage performance, delivering an initial discharge capacity of 218.8 mAh g−1 at 0.2 C with excellent capacity retention of 80.9% (0.5 C) after 200 cycles at a cut-off voltage of 4.6 V, along with 96.3% of capacity retention over 100 cycles at 4.5 V. These findings may afford meaningful construction for the upcycling of commercial S-LCO into next-generation upmarket cathode materials through the elaborate surface and bulk modification design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信