快速、超灵敏、特异性 BNP 生物传感器,带 LED 读数。

IF 3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Seth So, Jorge Torres Quiñones, Soonkon Kim, Byoungdeog Choi, Minhee Yun
{"title":"快速、超灵敏、特异性 BNP 生物传感器,带 LED 读数。","authors":"Seth So,&nbsp;Jorge Torres Quiñones,&nbsp;Soonkon Kim,&nbsp;Byoungdeog Choi,&nbsp;Minhee Yun","doi":"10.1007/s10544-024-00706-1","DOIUrl":null,"url":null,"abstract":"<div><p>Biosensing for diagnostics has risen rapidly in popularity over the past decades. With the discovery of new nanomaterials and morphologies, sensitivity is being constantly improved enough for reliable detection of trace biomarkers in human samples, like serum or sweat. This precision has enabled detailed research on the efficacy of biosensors. However, current biosensors suffer from reduced speed of operation. To make better use of this sensitivity, the development of a conductometric biosensor with in-situ use of an Laser Emitting Device (LED) display can provide rapid determination of sample results, steadily pushing biosensors toward more clinical, point-of-care (POC) applications. In this research, a simple LED was used for facile optical determination and visual output of an ultrasensitive bio-signal amplification circuit was made to interface with a B-type Natriuretic Peptide (BNP) biosensor. Tuning circuit gain enables an elegant method for adjustable separation of concentrations into 3 discrete categories: sub-threshold, analog, and saturation regions. These regions corresponded to 0 &lt; [C] &lt; 500 pg/mL (25, 100, 250 pg/mL, LED off), 500 &lt; [C] &lt; 1000 pg/mL (LED varying intensity), and 1000 pg/mL &lt; [C] (LED full intensity). System efficacy was tested using human blood serum samples from University of Pittsburgh Medical Center patients, which were able to be accurately detected and sorted for rapid low cost and power. determination without need for complex digital elements. Additional specificity testing suggests insignificant impact of non-target biomarkers.</p></div>","PeriodicalId":490,"journal":{"name":"Biomedical Microdevices","volume":"26 3","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid ultrasensitive and specific BNP biosensor with LED readout\",\"authors\":\"Seth So,&nbsp;Jorge Torres Quiñones,&nbsp;Soonkon Kim,&nbsp;Byoungdeog Choi,&nbsp;Minhee Yun\",\"doi\":\"10.1007/s10544-024-00706-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biosensing for diagnostics has risen rapidly in popularity over the past decades. With the discovery of new nanomaterials and morphologies, sensitivity is being constantly improved enough for reliable detection of trace biomarkers in human samples, like serum or sweat. This precision has enabled detailed research on the efficacy of biosensors. However, current biosensors suffer from reduced speed of operation. To make better use of this sensitivity, the development of a conductometric biosensor with in-situ use of an Laser Emitting Device (LED) display can provide rapid determination of sample results, steadily pushing biosensors toward more clinical, point-of-care (POC) applications. In this research, a simple LED was used for facile optical determination and visual output of an ultrasensitive bio-signal amplification circuit was made to interface with a B-type Natriuretic Peptide (BNP) biosensor. Tuning circuit gain enables an elegant method for adjustable separation of concentrations into 3 discrete categories: sub-threshold, analog, and saturation regions. These regions corresponded to 0 &lt; [C] &lt; 500 pg/mL (25, 100, 250 pg/mL, LED off), 500 &lt; [C] &lt; 1000 pg/mL (LED varying intensity), and 1000 pg/mL &lt; [C] (LED full intensity). System efficacy was tested using human blood serum samples from University of Pittsburgh Medical Center patients, which were able to be accurately detected and sorted for rapid low cost and power. determination without need for complex digital elements. Additional specificity testing suggests insignificant impact of non-target biomarkers.</p></div>\",\"PeriodicalId\":490,\"journal\":{\"name\":\"Biomedical Microdevices\",\"volume\":\"26 3\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Microdevices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10544-024-00706-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Microdevices","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10544-024-00706-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

过去几十年来,用于诊断的生物传感技术迅速普及。随着新型纳米材料和形态的发现,灵敏度不断提高,足以可靠地检测人体样本(如血清或汗液)中的痕量生物标记物。这种精确性使得人们能够对生物传感器的功效进行详细研究。然而,目前的生物传感器存在操作速度较慢的问题。为了更好地利用这种灵敏度,开发出一种可在原位使用激光发射装置(LED)显示屏的电导生物传感器,可快速确定样本结果,从而稳步推动生物传感器走向更多的临床护理点(POC)应用。在这项研究中,使用了简单的 LED 进行简便的光学测定,并制作了超灵敏生物信号放大电路的视觉输出,以便与 B 型钠尿肽(BNP)生物传感器连接。通过调节电路增益,可以采用一种优雅的方法将浓度可调地分为三个离散类别:阈下区、模拟区和饱和区。这些区域对应于 0
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rapid ultrasensitive and specific BNP biosensor with LED readout

Rapid ultrasensitive and specific BNP biosensor with LED readout

Biosensing for diagnostics has risen rapidly in popularity over the past decades. With the discovery of new nanomaterials and morphologies, sensitivity is being constantly improved enough for reliable detection of trace biomarkers in human samples, like serum or sweat. This precision has enabled detailed research on the efficacy of biosensors. However, current biosensors suffer from reduced speed of operation. To make better use of this sensitivity, the development of a conductometric biosensor with in-situ use of an Laser Emitting Device (LED) display can provide rapid determination of sample results, steadily pushing biosensors toward more clinical, point-of-care (POC) applications. In this research, a simple LED was used for facile optical determination and visual output of an ultrasensitive bio-signal amplification circuit was made to interface with a B-type Natriuretic Peptide (BNP) biosensor. Tuning circuit gain enables an elegant method for adjustable separation of concentrations into 3 discrete categories: sub-threshold, analog, and saturation regions. These regions corresponded to 0 < [C] < 500 pg/mL (25, 100, 250 pg/mL, LED off), 500 < [C] < 1000 pg/mL (LED varying intensity), and 1000 pg/mL < [C] (LED full intensity). System efficacy was tested using human blood serum samples from University of Pittsburgh Medical Center patients, which were able to be accurately detected and sorted for rapid low cost and power. determination without need for complex digital elements. Additional specificity testing suggests insignificant impact of non-target biomarkers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomedical Microdevices
Biomedical Microdevices 工程技术-工程:生物医学
CiteScore
6.90
自引率
3.60%
发文量
32
审稿时长
6 months
期刊介绍: Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. General subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests of the Journal include systems for neural stimulation and recording, bioseparation technologies such as nanofilters and electrophoretic equipment, miniaturized analytic and DNA identification systems, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules. Contributions reporting on fundamental and applied investigations of the material science, biochemistry, and physics of biomedical microdevices and nanotechnology are encouraged. A non-exhaustive list of fields of interest includes: nanoparticle synthesis, characterization, and validation of therapeutic or imaging efficacy in animal models; biocompatibility; biochemical modification of microfabricated devices, with reference to non-specific protein adsorption, and the active immobilization and patterning of proteins on micro/nanofabricated surfaces; the dynamics of fluids in micro-and-nano-fabricated channels; the electromechanical and structural response of micro/nanofabricated systems; the interactions of microdevices with cells and tissues, including biocompatibility and biodegradation studies; variations in the characteristics of the systems as a function of the micro/nanofabrication parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信