烟酰胺腺嘌呤二核苷酸氧化酶的特异性信号传递--其作用部位的作用。

IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Katrin Schröder
{"title":"烟酰胺腺嘌呤二核苷酸氧化酶的特异性信号传递--其作用部位的作用。","authors":"Katrin Schröder","doi":"10.1016/j.cbpa.2024.102461","DOIUrl":null,"url":null,"abstract":"<div><p>Nicotinamide adenine dinucleotide (NADPH) oxidases, known for their role in generating reactive oxygen species (ROS) have emerged as key regulators of specific cellular signaling pathways. While their primary function is ROS production, recent research has highlighted the significance of their site-specific activity in governing distinct cellular signaling events.</p><p>NADPH oxidases (Nox) are found in various cell types, and both their expression and activities are tightly regulated. The generated ROS, such as superoxide anions and hydrogen peroxide, function as secondary messengers that modulate various signaling molecules, including protein kinases, transcription factors, and phosphatases.</p><p>The site-specific action of NADPH oxidases in different cellular compartments, such as the plasma membrane, endosomes, and endoplasmic reticulum, allows for precise control over specific signaling pathways. Understanding the complex interplay of NADPH oxidases in cellular signaling is essential for deciphering their roles in health and disease. Dysregulation of these enzymes can lead to oxidative stress and inflammation, making them potential therapeutic targets in various pathological conditions. Ongoing research into NADPH oxidase activation and site-specific signaling promises to unveil new insights into cellular physiology and potential treatment strategies.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"81 ","pages":"Article 102461"},"PeriodicalIF":6.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Specific signaling by nicotinamide adenine dinucleotide oxidases – Role of their site of action\",\"authors\":\"Katrin Schröder\",\"doi\":\"10.1016/j.cbpa.2024.102461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nicotinamide adenine dinucleotide (NADPH) oxidases, known for their role in generating reactive oxygen species (ROS) have emerged as key regulators of specific cellular signaling pathways. While their primary function is ROS production, recent research has highlighted the significance of their site-specific activity in governing distinct cellular signaling events.</p><p>NADPH oxidases (Nox) are found in various cell types, and both their expression and activities are tightly regulated. The generated ROS, such as superoxide anions and hydrogen peroxide, function as secondary messengers that modulate various signaling molecules, including protein kinases, transcription factors, and phosphatases.</p><p>The site-specific action of NADPH oxidases in different cellular compartments, such as the plasma membrane, endosomes, and endoplasmic reticulum, allows for precise control over specific signaling pathways. Understanding the complex interplay of NADPH oxidases in cellular signaling is essential for deciphering their roles in health and disease. Dysregulation of these enzymes can lead to oxidative stress and inflammation, making them potential therapeutic targets in various pathological conditions. Ongoing research into NADPH oxidase activation and site-specific signaling promises to unveil new insights into cellular physiology and potential treatment strategies.</p></div>\",\"PeriodicalId\":291,\"journal\":{\"name\":\"Current Opinion in Chemical Biology\",\"volume\":\"81 \",\"pages\":\"Article 102461\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367593124000371\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593124000371","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

烟酰胺腺嘌呤二核苷酸(NADPH)氧化酶以产生活性氧(ROS)而闻名,现已成为特定细胞信号传导途径的关键调控因子。虽然它们的主要功能是产生 ROS,但最近的研究强调了它们在调控不同细胞信号事件中特定位点活性的重要性。NADPH 氧化酶(Nox)存在于各种类型的细胞中,其表达和活性都受到严格调控。生成的 ROS(如超氧阴离子和过氧化氢)可作为次级信使调节各种信号分子,包括蛋白激酶、转录因子和磷酸酶。NADPH 氧化酶在不同细胞区室(如质膜、内体和内质网)中的特定部位发挥作用,从而实现了对特定信号通路的精确控制。了解 NADPH 氧化酶在细胞信号传导过程中的复杂相互作用,对于解读它们在健康和疾病中的作用至关重要。这些酶的失调会导致氧化应激和炎症,从而使它们成为各种病症的潜在治疗靶点。对 NADPH 氧化酶活化和特定位点信号转导的持续研究有望揭示细胞生理学和潜在治疗策略的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Specific signaling by nicotinamide adenine dinucleotide oxidases – Role of their site of action

Nicotinamide adenine dinucleotide (NADPH) oxidases, known for their role in generating reactive oxygen species (ROS) have emerged as key regulators of specific cellular signaling pathways. While their primary function is ROS production, recent research has highlighted the significance of their site-specific activity in governing distinct cellular signaling events.

NADPH oxidases (Nox) are found in various cell types, and both their expression and activities are tightly regulated. The generated ROS, such as superoxide anions and hydrogen peroxide, function as secondary messengers that modulate various signaling molecules, including protein kinases, transcription factors, and phosphatases.

The site-specific action of NADPH oxidases in different cellular compartments, such as the plasma membrane, endosomes, and endoplasmic reticulum, allows for precise control over specific signaling pathways. Understanding the complex interplay of NADPH oxidases in cellular signaling is essential for deciphering their roles in health and disease. Dysregulation of these enzymes can lead to oxidative stress and inflammation, making them potential therapeutic targets in various pathological conditions. Ongoing research into NADPH oxidase activation and site-specific signaling promises to unveil new insights into cellular physiology and potential treatment strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Chemical Biology
Current Opinion in Chemical Biology 生物-生化与分子生物学
CiteScore
13.30
自引率
1.30%
发文量
113
审稿时长
74 days
期刊介绍: COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信