Hiroshi Fujiwara, David Omogbhe, Kamran Sadiq and Alexandru Tamasan
{"title":"平面对称张量的衰减矩射线变换反演","authors":"Hiroshi Fujiwara, David Omogbhe, Kamran Sadiq and Alexandru Tamasan","doi":"10.1088/1361-6420/ad49cc","DOIUrl":null,"url":null,"abstract":"We present a reconstruction method that stably recovers the real valued, symmetric tensors compactly supported in the Euclidean plane, from knowledge of their attenuated momenta ray transform. The problem is recast as an inverse boundary value problem for a system of transport equations, which we solve by an extension of Bukhgeim’s A-analytic theory. The method of proof is constructive. To illustrate the reconstruction method, we present results obtained in the numerical implementation for the non-attenuated case of one-tensors.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inversion of the attenuated momenta ray transform of planar symmetric tensors\",\"authors\":\"Hiroshi Fujiwara, David Omogbhe, Kamran Sadiq and Alexandru Tamasan\",\"doi\":\"10.1088/1361-6420/ad49cc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a reconstruction method that stably recovers the real valued, symmetric tensors compactly supported in the Euclidean plane, from knowledge of their attenuated momenta ray transform. The problem is recast as an inverse boundary value problem for a system of transport equations, which we solve by an extension of Bukhgeim’s A-analytic theory. The method of proof is constructive. To illustrate the reconstruction method, we present results obtained in the numerical implementation for the non-attenuated case of one-tensors.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad49cc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad49cc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Inversion of the attenuated momenta ray transform of planar symmetric tensors
We present a reconstruction method that stably recovers the real valued, symmetric tensors compactly supported in the Euclidean plane, from knowledge of their attenuated momenta ray transform. The problem is recast as an inverse boundary value problem for a system of transport equations, which we solve by an extension of Bukhgeim’s A-analytic theory. The method of proof is constructive. To illustrate the reconstruction method, we present results obtained in the numerical implementation for the non-attenuated case of one-tensors.