{"title":"莪术离体小茎形成过程中的形态和生化变化","authors":"Afreen Anjum, Smriti Adil, Afaque Quraishi","doi":"10.1007/s13562-024-00892-2","DOIUrl":null,"url":null,"abstract":"<p><i>Curcuma</i> <i>caesia</i> Roxb., a critically endangered herb in the Zingiberaceae family, can be conserved through microrhizomes, which are easily transported, germinate like seeds, and are independent of seasonal variations. The current investigation attempts to induce microrhizomes of this endangered herb for conservation purpose using high concentration of sucrose. To encourage the establishment of microrhizomes, six-month-old cultures of <i>C.</i> <i>caesia</i> were transferred to Murashige and Skoog supplemented with containing 8 mg L<sup>−1</sup> benzyladenine, 8 mg L<sup>−1</sup> kinetin, 100 mg L<sup>−1</sup> citric acid, 200 mg L<sup>−1</sup> adenine sulphate, and 2 mg L<sup>−1</sup> indole-3-acetic acid (standard medium). For this, standard medium was examined with sucrose concentrations of 3%, 6%, 9%, and 12%. The standard medium with 9% sucrose showed the highest rate of microrhizome formation (now referred as microrhizome production medium, MPM). During acclimatization, the survival rate of microrhizomes exceeded 90%. The physiology behind the microrhizome formation was also evaluated using enzymatic and non-enzymatic tests on days 0, 30, and 60 after inoculation. Superoxide dismutase activity, an enzymatic defence molecule, and total soluble sugar and ascorbate content, a non-enzymatic defence molecule, both increased in the MPM microrhizomes relative to the control [shoot multiplication medium (standard medium with 3% sucrose) at day 0]. Further, protein, 2-thiobarbituric acid reactive substances, and hydrogen peroxide content also increased. The biochemical results proved that 9% sucrose in MPM induces osmotic stress which eventually led to the formation of <i>C.</i> <i>caesia</i> microrhizomes, an in vitro storage organ.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Morphological and biochemical alterations during in vitro microrhizome formation of Curcuma caesia Roxb\",\"authors\":\"Afreen Anjum, Smriti Adil, Afaque Quraishi\",\"doi\":\"10.1007/s13562-024-00892-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><i>Curcuma</i> <i>caesia</i> Roxb., a critically endangered herb in the Zingiberaceae family, can be conserved through microrhizomes, which are easily transported, germinate like seeds, and are independent of seasonal variations. The current investigation attempts to induce microrhizomes of this endangered herb for conservation purpose using high concentration of sucrose. To encourage the establishment of microrhizomes, six-month-old cultures of <i>C.</i> <i>caesia</i> were transferred to Murashige and Skoog supplemented with containing 8 mg L<sup>−1</sup> benzyladenine, 8 mg L<sup>−1</sup> kinetin, 100 mg L<sup>−1</sup> citric acid, 200 mg L<sup>−1</sup> adenine sulphate, and 2 mg L<sup>−1</sup> indole-3-acetic acid (standard medium). For this, standard medium was examined with sucrose concentrations of 3%, 6%, 9%, and 12%. The standard medium with 9% sucrose showed the highest rate of microrhizome formation (now referred as microrhizome production medium, MPM). During acclimatization, the survival rate of microrhizomes exceeded 90%. The physiology behind the microrhizome formation was also evaluated using enzymatic and non-enzymatic tests on days 0, 30, and 60 after inoculation. Superoxide dismutase activity, an enzymatic defence molecule, and total soluble sugar and ascorbate content, a non-enzymatic defence molecule, both increased in the MPM microrhizomes relative to the control [shoot multiplication medium (standard medium with 3% sucrose) at day 0]. Further, protein, 2-thiobarbituric acid reactive substances, and hydrogen peroxide content also increased. The biochemical results proved that 9% sucrose in MPM induces osmotic stress which eventually led to the formation of <i>C.</i> <i>caesia</i> microrhizomes, an in vitro storage organ.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13562-024-00892-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00892-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Morphological and biochemical alterations during in vitro microrhizome formation of Curcuma caesia Roxb
Curcumacaesia Roxb., a critically endangered herb in the Zingiberaceae family, can be conserved through microrhizomes, which are easily transported, germinate like seeds, and are independent of seasonal variations. The current investigation attempts to induce microrhizomes of this endangered herb for conservation purpose using high concentration of sucrose. To encourage the establishment of microrhizomes, six-month-old cultures of C.caesia were transferred to Murashige and Skoog supplemented with containing 8 mg L−1 benzyladenine, 8 mg L−1 kinetin, 100 mg L−1 citric acid, 200 mg L−1 adenine sulphate, and 2 mg L−1 indole-3-acetic acid (standard medium). For this, standard medium was examined with sucrose concentrations of 3%, 6%, 9%, and 12%. The standard medium with 9% sucrose showed the highest rate of microrhizome formation (now referred as microrhizome production medium, MPM). During acclimatization, the survival rate of microrhizomes exceeded 90%. The physiology behind the microrhizome formation was also evaluated using enzymatic and non-enzymatic tests on days 0, 30, and 60 after inoculation. Superoxide dismutase activity, an enzymatic defence molecule, and total soluble sugar and ascorbate content, a non-enzymatic defence molecule, both increased in the MPM microrhizomes relative to the control [shoot multiplication medium (standard medium with 3% sucrose) at day 0]. Further, protein, 2-thiobarbituric acid reactive substances, and hydrogen peroxide content also increased. The biochemical results proved that 9% sucrose in MPM induces osmotic stress which eventually led to the formation of C.caesia microrhizomes, an in vitro storage organ.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.