{"title":"微波辅助热解塑料生产航空油:能源和经济分析","authors":"Sichen Fan, Yifan Liu, Yaning Zhang, Wenke Zhao, Chunbao Xu","doi":"10.1007/s11705-024-2436-y","DOIUrl":null,"url":null,"abstract":"<div><p>Microwave-assisted pyrolysis is an effective method for recycling plastic wastes into oils that can be used for aviation fuels. In this study, energy and economic analyses of aviation oil production from microwave-assisted pyrolysis of polystyrene were performed. The total energy efficiency, recovered energy efficiency, unitary cost, unitary energy economic cost, relative cost difference, and energy economic factor were detailed. And the effects of microwave power, pyrolysis temperature, microwave absorbent loading, and microwave absorbent type on these parameters were covered. It was found that pyrolysis temperature has the most significant effect on the unitary cost and unitary energy economic cost of aviation oil, and- microwave absorbent type has a significant influence on energy economic factor during the whole microwave-assisted pyrolysis process. The optimum reaction conditions at the tonnage system for pyrolysis of 1 t polystyrene were microwave power of 650 W, pyrolysis temperature of 460 °C, and silicon carbide (microwave absorbent) at a loading of 2 t (twice than feedstock loading). At these optimal conditions, the total energy efficiency, recovered energy efficiency, unitary cost, unitary energy economic cost, relative cost difference, and energy economic factor were 62.78%, 96.51%, 3.21 × 10<sup>4</sup> yuan·t<sup>−1</sup>, 779 yuan·GJ<sup>−1</sup>, 1.49, and 71.02%, respectively.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microwave-assisted pyrolysis of plastics for aviation oil production: energy and economic analyses\",\"authors\":\"Sichen Fan, Yifan Liu, Yaning Zhang, Wenke Zhao, Chunbao Xu\",\"doi\":\"10.1007/s11705-024-2436-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microwave-assisted pyrolysis is an effective method for recycling plastic wastes into oils that can be used for aviation fuels. In this study, energy and economic analyses of aviation oil production from microwave-assisted pyrolysis of polystyrene were performed. The total energy efficiency, recovered energy efficiency, unitary cost, unitary energy economic cost, relative cost difference, and energy economic factor were detailed. And the effects of microwave power, pyrolysis temperature, microwave absorbent loading, and microwave absorbent type on these parameters were covered. It was found that pyrolysis temperature has the most significant effect on the unitary cost and unitary energy economic cost of aviation oil, and- microwave absorbent type has a significant influence on energy economic factor during the whole microwave-assisted pyrolysis process. The optimum reaction conditions at the tonnage system for pyrolysis of 1 t polystyrene were microwave power of 650 W, pyrolysis temperature of 460 °C, and silicon carbide (microwave absorbent) at a loading of 2 t (twice than feedstock loading). At these optimal conditions, the total energy efficiency, recovered energy efficiency, unitary cost, unitary energy economic cost, relative cost difference, and energy economic factor were 62.78%, 96.51%, 3.21 × 10<sup>4</sup> yuan·t<sup>−1</sup>, 779 yuan·GJ<sup>−1</sup>, 1.49, and 71.02%, respectively.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"18 7\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-024-2436-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2436-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Microwave-assisted pyrolysis of plastics for aviation oil production: energy and economic analyses
Microwave-assisted pyrolysis is an effective method for recycling plastic wastes into oils that can be used for aviation fuels. In this study, energy and economic analyses of aviation oil production from microwave-assisted pyrolysis of polystyrene were performed. The total energy efficiency, recovered energy efficiency, unitary cost, unitary energy economic cost, relative cost difference, and energy economic factor were detailed. And the effects of microwave power, pyrolysis temperature, microwave absorbent loading, and microwave absorbent type on these parameters were covered. It was found that pyrolysis temperature has the most significant effect on the unitary cost and unitary energy economic cost of aviation oil, and- microwave absorbent type has a significant influence on energy economic factor during the whole microwave-assisted pyrolysis process. The optimum reaction conditions at the tonnage system for pyrolysis of 1 t polystyrene were microwave power of 650 W, pyrolysis temperature of 460 °C, and silicon carbide (microwave absorbent) at a loading of 2 t (twice than feedstock loading). At these optimal conditions, the total energy efficiency, recovered energy efficiency, unitary cost, unitary energy economic cost, relative cost difference, and energy economic factor were 62.78%, 96.51%, 3.21 × 104 yuan·t−1, 779 yuan·GJ−1, 1.49, and 71.02%, respectively.
期刊介绍:
Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.