M. M. Mikhailov, S. A. Yur’ev, A. N. Lapin, V. A. Goronchko
{"title":"Y2O3 粒子修饰的光学纳米粉体的抗辐射性","authors":"M. M. Mikhailov, S. A. Yur’ev, A. N. Lapin, V. A. Goronchko","doi":"10.1007/s11182-024-03168-3","DOIUrl":null,"url":null,"abstract":"<p>The paper studies the electron irradiation at an energy of 30 keV affecting the diffuse-reflectance spectra and integrated absorption coefficient of solar irradiance of the micron-sized mZnO powder modified by adding nY<sub>2</sub>O<sub>3</sub> nanoparticles in the amount of 0.1 to 10 wt.%. The best content of nanoparticles is found to be 3 wt.%, when the diffuse-reflectance spectra and the integrated absorption coefficient of the modified powder are 1.41 times lower than in the initial powder. It is shown that free electrons forming during the powder irradiation, make the highest contribution to the powder degradation.</p>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"67 6","pages":"694 - 700"},"PeriodicalIF":0.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiation Resistance of Optical Nanopowder Modified by Y2O3 Particles\",\"authors\":\"M. M. Mikhailov, S. A. Yur’ev, A. N. Lapin, V. A. Goronchko\",\"doi\":\"10.1007/s11182-024-03168-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper studies the electron irradiation at an energy of 30 keV affecting the diffuse-reflectance spectra and integrated absorption coefficient of solar irradiance of the micron-sized mZnO powder modified by adding nY<sub>2</sub>O<sub>3</sub> nanoparticles in the amount of 0.1 to 10 wt.%. The best content of nanoparticles is found to be 3 wt.%, when the diffuse-reflectance spectra and the integrated absorption coefficient of the modified powder are 1.41 times lower than in the initial powder. It is shown that free electrons forming during the powder irradiation, make the highest contribution to the powder degradation.</p>\",\"PeriodicalId\":770,\"journal\":{\"name\":\"Russian Physics Journal\",\"volume\":\"67 6\",\"pages\":\"694 - 700\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Physics Journal\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11182-024-03168-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-024-03168-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Radiation Resistance of Optical Nanopowder Modified by Y2O3 Particles
The paper studies the electron irradiation at an energy of 30 keV affecting the diffuse-reflectance spectra and integrated absorption coefficient of solar irradiance of the micron-sized mZnO powder modified by adding nY2O3 nanoparticles in the amount of 0.1 to 10 wt.%. The best content of nanoparticles is found to be 3 wt.%, when the diffuse-reflectance spectra and the integrated absorption coefficient of the modified powder are 1.41 times lower than in the initial powder. It is shown that free electrons forming during the powder irradiation, make the highest contribution to the powder degradation.
期刊介绍:
Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.