废物生物质转化为能源综述:热化学和生物化学综合转化促进资源回收

IF 3.5 Q3 ENGINEERING, ENVIRONMENTAL
Yasmin Ara Begum, Sheetal Kumari, Shailendra Kumar Jain and Manoj Chandra Garg
{"title":"废物生物质转化为能源综述:热化学和生物化学综合转化促进资源回收","authors":"Yasmin Ara Begum, Sheetal Kumari, Shailendra Kumar Jain and Manoj Chandra Garg","doi":"10.1039/D4VA00109E","DOIUrl":null,"url":null,"abstract":"<p >Improving energy security and lowering greenhouse gas emissions need the utilization of renewable resources like biomass. The production of power, heat, and biofuels from biomass has gained significant attention in the current energy scenario. The current study highlights the developments, advancements, and future possibilities of merging thermochemical and biochemical conversion processes for the manufacture of value-added chemicals and green fuels. While biological processes have extensive processing times and low product yields, thermochemical methods are limited by high processing costs and temperature requirements. The integration of thermochemical and biochemical conversion processes facilitates the circular economy and improves resource usage. Despite the wide range of feasible integration scenarios, the majority of research that is now accessible in the literature concentrates on the developments in thermochemical or biochemical processes as a standalone conversion pathway. The present review aids in gaining a basic understanding of potential routes to unlock pathways for complete biomass conversion. Pyrolysis, as well as hybrid conversion techniques, are the most appealing methods from an economic evaluation standpoint. In this work, a techno-economic analysis of the significant conversion processes has also been presented. Examining the environmental impact and costs of alternative waste conversion processes is necessary when obtaining energy from garbage or biomass. So, life cycle assessment (LCA) is a useful method for comparing the environmental effects of various waste-to-energy options. To increase the production of biofuels, further research is required in the areas of feedstock pretreatment, catalyst development, and total production system optimization.</p>","PeriodicalId":72941,"journal":{"name":"Environmental science. Advances","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00109e?page=search","citationCount":"0","resultStr":"{\"title\":\"A review on waste biomass-to-energy: integrated thermochemical and biochemical conversion for resource recovery\",\"authors\":\"Yasmin Ara Begum, Sheetal Kumari, Shailendra Kumar Jain and Manoj Chandra Garg\",\"doi\":\"10.1039/D4VA00109E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Improving energy security and lowering greenhouse gas emissions need the utilization of renewable resources like biomass. The production of power, heat, and biofuels from biomass has gained significant attention in the current energy scenario. The current study highlights the developments, advancements, and future possibilities of merging thermochemical and biochemical conversion processes for the manufacture of value-added chemicals and green fuels. While biological processes have extensive processing times and low product yields, thermochemical methods are limited by high processing costs and temperature requirements. The integration of thermochemical and biochemical conversion processes facilitates the circular economy and improves resource usage. Despite the wide range of feasible integration scenarios, the majority of research that is now accessible in the literature concentrates on the developments in thermochemical or biochemical processes as a standalone conversion pathway. The present review aids in gaining a basic understanding of potential routes to unlock pathways for complete biomass conversion. Pyrolysis, as well as hybrid conversion techniques, are the most appealing methods from an economic evaluation standpoint. In this work, a techno-economic analysis of the significant conversion processes has also been presented. Examining the environmental impact and costs of alternative waste conversion processes is necessary when obtaining energy from garbage or biomass. So, life cycle assessment (LCA) is a useful method for comparing the environmental effects of various waste-to-energy options. To increase the production of biofuels, further research is required in the areas of feedstock pretreatment, catalyst development, and total production system optimization.</p>\",\"PeriodicalId\":72941,\"journal\":{\"name\":\"Environmental science. Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/va/d4va00109e?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science. Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/va/d4va00109e\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science. Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/va/d4va00109e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

提高能源安全和减少温室气体排放需要利用生物质等可再生资源。在当前的能源形势下,利用生物质生产电力、热能和生物燃料已受到极大关注。本研究强调了热化学和生物化学转化过程的发展、进步和未来的可能性,以生产增值化学品和绿色燃料。生物工艺处理时间长、产品产量低,而热化学方法则受限于高处理成本和温度要求。热化学和生物化学转化过程的整合有利于循环经济的发展并提高资源利用率。尽管有多种可行的整合方案,但目前文献中的大部分研究都集中在作为独立转化途径的热化学或生物化学工艺的发展上。本综述有助于获得对生物质完全转化途径的基本认识和潜在解锁途径。从经济评估的角度来看,热解以及混合转化技术是最有吸引力的方法。在这项工作中,还对重要的转化过程进行了技术经济分析。从垃圾或生物质中获取能源时,有必要研究替代废物转化工艺对环境的影响和成本。因此,生命周期评估(LCA)是比较各种废物变能源方案对环境影响的有效方法。为了提高生物燃料的产量,需要在原料预处理、催化剂开发和整个生产系统优化等领域开展进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A review on waste biomass-to-energy: integrated thermochemical and biochemical conversion for resource recovery

A review on waste biomass-to-energy: integrated thermochemical and biochemical conversion for resource recovery

Improving energy security and lowering greenhouse gas emissions need the utilization of renewable resources like biomass. The production of power, heat, and biofuels from biomass has gained significant attention in the current energy scenario. The current study highlights the developments, advancements, and future possibilities of merging thermochemical and biochemical conversion processes for the manufacture of value-added chemicals and green fuels. While biological processes have extensive processing times and low product yields, thermochemical methods are limited by high processing costs and temperature requirements. The integration of thermochemical and biochemical conversion processes facilitates the circular economy and improves resource usage. Despite the wide range of feasible integration scenarios, the majority of research that is now accessible in the literature concentrates on the developments in thermochemical or biochemical processes as a standalone conversion pathway. The present review aids in gaining a basic understanding of potential routes to unlock pathways for complete biomass conversion. Pyrolysis, as well as hybrid conversion techniques, are the most appealing methods from an economic evaluation standpoint. In this work, a techno-economic analysis of the significant conversion processes has also been presented. Examining the environmental impact and costs of alternative waste conversion processes is necessary when obtaining energy from garbage or biomass. So, life cycle assessment (LCA) is a useful method for comparing the environmental effects of various waste-to-energy options. To increase the production of biofuels, further research is required in the areas of feedstock pretreatment, catalyst development, and total production system optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信