Jingyang Li, Fengxiang Guo, Wei Li, Tianxiang Xiao, Chengyu Hu
{"title":"评估互通式立交桥预警系统对驾驶风险的影响:模拟驾驶研究","authors":"Jingyang Li, Fengxiang Guo, Wei Li, Tianxiang Xiao, Chengyu Hu","doi":"10.1155/2024/3582046","DOIUrl":null,"url":null,"abstract":"<div>\n <p>To investigate the effects of proactive safety control systems suitable for highway interchanges and improve road traffic safety. Simulated driving experiments were conducted to test the effects of the interchange warning system (IWS) on the ramp, merging section, diverging section, and accident section. Random forest (RF) and SHapley Additive exPlanations (SHAP) are used to analyze the effects between driving behavior and driving risk change in both situations without and with IWS. The results show that (1) as driving risk increases, drivers tend to increase the frequency of braking and engage in more comprehensive saccade behaviors. Concurrently, there is an increase in acceleration and speed variation, leading to a gradual decrease in speed. (2) Compared with the SVR and XGBoost, RF can better fit the nonlinear relationship between driving risk and driver behavior characteristics with the application of IWS. (3) The IWS mainly reduces driving risk by affecting operation behavior. When the mean speed, speed standard deviation (SD), acceleration SD, and maximum braking depth are at 40 to 70 km/h, 3 to 10 km/h, 0 to 0.6 m/s<sup>2</sup>, and 14 to 16, respectively, there is a significant reduction in driving risk. The application of the IWS expands the effective range of mean speed and speed SD for reducing driving risk to 40 to 100 km/h and 3 to 15 km/h, respectively.</p>\n </div>","PeriodicalId":50259,"journal":{"name":"Journal of Advanced Transportation","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3582046","citationCount":"0","resultStr":"{\"title\":\"Assessing the Effects of Interchange Warning Systems on Driving Risk: A Driving Simulator Study\",\"authors\":\"Jingyang Li, Fengxiang Guo, Wei Li, Tianxiang Xiao, Chengyu Hu\",\"doi\":\"10.1155/2024/3582046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>To investigate the effects of proactive safety control systems suitable for highway interchanges and improve road traffic safety. Simulated driving experiments were conducted to test the effects of the interchange warning system (IWS) on the ramp, merging section, diverging section, and accident section. Random forest (RF) and SHapley Additive exPlanations (SHAP) are used to analyze the effects between driving behavior and driving risk change in both situations without and with IWS. The results show that (1) as driving risk increases, drivers tend to increase the frequency of braking and engage in more comprehensive saccade behaviors. Concurrently, there is an increase in acceleration and speed variation, leading to a gradual decrease in speed. (2) Compared with the SVR and XGBoost, RF can better fit the nonlinear relationship between driving risk and driver behavior characteristics with the application of IWS. (3) The IWS mainly reduces driving risk by affecting operation behavior. When the mean speed, speed standard deviation (SD), acceleration SD, and maximum braking depth are at 40 to 70 km/h, 3 to 10 km/h, 0 to 0.6 m/s<sup>2</sup>, and 14 to 16, respectively, there is a significant reduction in driving risk. The application of the IWS expands the effective range of mean speed and speed SD for reducing driving risk to 40 to 100 km/h and 3 to 15 km/h, respectively.</p>\\n </div>\",\"PeriodicalId\":50259,\"journal\":{\"name\":\"Journal of Advanced Transportation\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3582046\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Transportation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/3582046\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Transportation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3582046","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Assessing the Effects of Interchange Warning Systems on Driving Risk: A Driving Simulator Study
To investigate the effects of proactive safety control systems suitable for highway interchanges and improve road traffic safety. Simulated driving experiments were conducted to test the effects of the interchange warning system (IWS) on the ramp, merging section, diverging section, and accident section. Random forest (RF) and SHapley Additive exPlanations (SHAP) are used to analyze the effects between driving behavior and driving risk change in both situations without and with IWS. The results show that (1) as driving risk increases, drivers tend to increase the frequency of braking and engage in more comprehensive saccade behaviors. Concurrently, there is an increase in acceleration and speed variation, leading to a gradual decrease in speed. (2) Compared with the SVR and XGBoost, RF can better fit the nonlinear relationship between driving risk and driver behavior characteristics with the application of IWS. (3) The IWS mainly reduces driving risk by affecting operation behavior. When the mean speed, speed standard deviation (SD), acceleration SD, and maximum braking depth are at 40 to 70 km/h, 3 to 10 km/h, 0 to 0.6 m/s2, and 14 to 16, respectively, there is a significant reduction in driving risk. The application of the IWS expands the effective range of mean speed and speed SD for reducing driving risk to 40 to 100 km/h and 3 to 15 km/h, respectively.
期刊介绍:
The Journal of Advanced Transportation (JAT) is a fully peer reviewed international journal in transportation research areas related to public transit, road traffic, transport networks and air transport.
It publishes theoretical and innovative papers on analysis, design, operations, optimization and planning of multi-modal transport networks, transit & traffic systems, transport technology and traffic safety. Urban rail and bus systems, Pedestrian studies, traffic flow theory and control, Intelligent Transport Systems (ITS) and automated and/or connected vehicles are some topics of interest.
Highway engineering, railway engineering and logistics do not fall within the aims and scope of JAT.