{"title":"探索伤口愈合中的热动力学:温度和微环境的影响","authors":"Jun Huang, Chunjie Fan, Yindong Ma, Guobao Huang","doi":"10.2147/ccid.s468396","DOIUrl":null,"url":null,"abstract":"<strong>Abstract:</strong> Exploring the critical role of thermal dynamics in wound healing, this manuscript navigates through the complex biological responses initiated upon wound infliction and how temperature variations influence the healing trajectory. Integrating biothermal physics, clinical medicine, and biomedical engineering, it highlights the significance of thermal management in wound care, emphasizing the wound microenvironment’s division into internal and external domains and their collaborative impact on tissue repair. Innovations in real-time wound temperature monitoring, especially through intelligent wireless sensor dressings, are spotlighted as transformative, enabling precise wound condition management. The text underscores the necessity for further research to elucidate thermal regulation’s molecular and cellular mechanisms on healing processes. It advocates for standardized protocols for localized heating treatments, integrating them into personalized wound care strategies to enhance therapeutic outcomes, improve patient well-being, and achieve cost-effective healthcare practices. This work presents a forward-looking perspective on refining wound management through sophisticated, evidence-based interventions, emphasizing the interplay between thermal dynamics and wound healing.<br/><br/><strong>Keywords:</strong> wound healing, thermal dynamics, wound microenvironment, intelligent dressings, localized heating treatment<br/>","PeriodicalId":10447,"journal":{"name":"Clinical, Cosmetic and Investigational Dermatology","volume":"26 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Thermal Dynamics in Wound Healing: The Impact of Temperature and Microenvironment\",\"authors\":\"Jun Huang, Chunjie Fan, Yindong Ma, Guobao Huang\",\"doi\":\"10.2147/ccid.s468396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract:</strong> Exploring the critical role of thermal dynamics in wound healing, this manuscript navigates through the complex biological responses initiated upon wound infliction and how temperature variations influence the healing trajectory. Integrating biothermal physics, clinical medicine, and biomedical engineering, it highlights the significance of thermal management in wound care, emphasizing the wound microenvironment’s division into internal and external domains and their collaborative impact on tissue repair. Innovations in real-time wound temperature monitoring, especially through intelligent wireless sensor dressings, are spotlighted as transformative, enabling precise wound condition management. The text underscores the necessity for further research to elucidate thermal regulation’s molecular and cellular mechanisms on healing processes. It advocates for standardized protocols for localized heating treatments, integrating them into personalized wound care strategies to enhance therapeutic outcomes, improve patient well-being, and achieve cost-effective healthcare practices. This work presents a forward-looking perspective on refining wound management through sophisticated, evidence-based interventions, emphasizing the interplay between thermal dynamics and wound healing.<br/><br/><strong>Keywords:</strong> wound healing, thermal dynamics, wound microenvironment, intelligent dressings, localized heating treatment<br/>\",\"PeriodicalId\":10447,\"journal\":{\"name\":\"Clinical, Cosmetic and Investigational Dermatology\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical, Cosmetic and Investigational Dermatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/ccid.s468396\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical, Cosmetic and Investigational Dermatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/ccid.s468396","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
Exploring Thermal Dynamics in Wound Healing: The Impact of Temperature and Microenvironment
Abstract: Exploring the critical role of thermal dynamics in wound healing, this manuscript navigates through the complex biological responses initiated upon wound infliction and how temperature variations influence the healing trajectory. Integrating biothermal physics, clinical medicine, and biomedical engineering, it highlights the significance of thermal management in wound care, emphasizing the wound microenvironment’s division into internal and external domains and their collaborative impact on tissue repair. Innovations in real-time wound temperature monitoring, especially through intelligent wireless sensor dressings, are spotlighted as transformative, enabling precise wound condition management. The text underscores the necessity for further research to elucidate thermal regulation’s molecular and cellular mechanisms on healing processes. It advocates for standardized protocols for localized heating treatments, integrating them into personalized wound care strategies to enhance therapeutic outcomes, improve patient well-being, and achieve cost-effective healthcare practices. This work presents a forward-looking perspective on refining wound management through sophisticated, evidence-based interventions, emphasizing the interplay between thermal dynamics and wound healing.
期刊介绍:
Clinical, Cosmetic and Investigational Dermatology is an international, peer-reviewed, open access journal that focuses on the latest clinical and experimental research in all aspects of skin disease and cosmetic interventions. Normal and pathological processes in skin development and aging, their modification and treatment, as well as basic research into histology of dermal and dermal structures that provide clinical insights and potential treatment options are key topics for the journal.
Patient satisfaction, preference, quality of life, compliance, persistence and their role in developing new management options to optimize outcomes for target conditions constitute major areas of interest.
The journal is characterized by the rapid reporting of clinical studies, reviews and original research in skin research and skin care.
All areas of dermatology will be covered; contributions will be welcomed from all clinicians and basic science researchers globally.