{"title":"实现高能量密度的锌电池氧化钒阴极中的阳离子和阴离子联合氧化还原化学反应","authors":"Wenfeng Wang, Lu Zhang, Zeang Duan, Ruyue Li, Jiajin Zhao, Longteng Tang, Yiming Sui, Yadi Qi, Shumin Han, Chong Fang, Desong Wang, Xiulei Ji","doi":"10.1002/cey2.577","DOIUrl":null,"url":null,"abstract":"Rechargeable aqueous zinc batteries are promising for large-scale energy storage due to their low cost and high safety; however, their energy density has reached the ceiling based on conventional cathodes with a single cationic redox reaction mechanism. Herein, a highly reversible cathode of typical layered vanadium oxide is reported, which operates on both the cationic redox couple of V<sup>5+</sup>/V<sup>3+</sup> accompanied by the Zn<sup>2+</sup> storage and the anionic O<sup>–</sup>/O<sup>2–</sup> redox couple by anion hosting in an aqueous deep eutectic solvent electrolyte. The reversible oxygen redox delivers an additional capacity of ∼100 mAh g<sup>–1</sup> at an operating voltage of ∼1.80 V, which increases the energy density of the cathode by ∼36%, endowing the cathode system a record high energy density of ∼506 Wh kg<sup>–1</sup>. The findings highlight new opportunities for the design of high-energy zinc batteries with both Zn<sup>2+</sup> and anions as charge carriers.","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"27 1","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint cationic and anionic redox chemistry in a vanadium oxide cathode for zinc batteries achieving high energy density\",\"authors\":\"Wenfeng Wang, Lu Zhang, Zeang Duan, Ruyue Li, Jiajin Zhao, Longteng Tang, Yiming Sui, Yadi Qi, Shumin Han, Chong Fang, Desong Wang, Xiulei Ji\",\"doi\":\"10.1002/cey2.577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rechargeable aqueous zinc batteries are promising for large-scale energy storage due to their low cost and high safety; however, their energy density has reached the ceiling based on conventional cathodes with a single cationic redox reaction mechanism. Herein, a highly reversible cathode of typical layered vanadium oxide is reported, which operates on both the cationic redox couple of V<sup>5+</sup>/V<sup>3+</sup> accompanied by the Zn<sup>2+</sup> storage and the anionic O<sup>–</sup>/O<sup>2–</sup> redox couple by anion hosting in an aqueous deep eutectic solvent electrolyte. The reversible oxygen redox delivers an additional capacity of ∼100 mAh g<sup>–1</sup> at an operating voltage of ∼1.80 V, which increases the energy density of the cathode by ∼36%, endowing the cathode system a record high energy density of ∼506 Wh kg<sup>–1</sup>. The findings highlight new opportunities for the design of high-energy zinc batteries with both Zn<sup>2+</sup> and anions as charge carriers.\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/cey2.577\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/cey2.577","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
可充电锌水溶液电池因其低成本和高安全性而有望用于大规模储能;然而,基于单一阳离子氧化还原反应机制的传统阴极,其能量密度已达到上限。本文报告了一种典型层状氧化钒的高可逆阴极,它在水性深共晶溶剂电解质中,通过阴离子寄存,同时进行 V5+/V3+ 的阳离子氧化还原反应和阴离子 O-/O2- 氧化还原反应。在 1.80 V 的工作电压下,可逆氧氧化还原可提供 100 mAh g-1 的额外容量,使阴极的能量密度提高了 36%,使阴极系统的能量密度达到了 506 Wh kg-1 的历史新高。这些发现为设计以 Zn2+ 和阴离子为电荷载体的高能锌电池提供了新的机遇。
Joint cationic and anionic redox chemistry in a vanadium oxide cathode for zinc batteries achieving high energy density
Rechargeable aqueous zinc batteries are promising for large-scale energy storage due to their low cost and high safety; however, their energy density has reached the ceiling based on conventional cathodes with a single cationic redox reaction mechanism. Herein, a highly reversible cathode of typical layered vanadium oxide is reported, which operates on both the cationic redox couple of V5+/V3+ accompanied by the Zn2+ storage and the anionic O–/O2– redox couple by anion hosting in an aqueous deep eutectic solvent electrolyte. The reversible oxygen redox delivers an additional capacity of ∼100 mAh g–1 at an operating voltage of ∼1.80 V, which increases the energy density of the cathode by ∼36%, endowing the cathode system a record high energy density of ∼506 Wh kg–1. The findings highlight new opportunities for the design of high-energy zinc batteries with both Zn2+ and anions as charge carriers.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.