用于粒子加速器磁体电源异常检测的长短期记忆网络

Ihar Lobach, Michael Borland
{"title":"用于粒子加速器磁体电源异常检测的长短期记忆网络","authors":"Ihar Lobach, Michael Borland","doi":"arxiv-2405.18321","DOIUrl":null,"url":null,"abstract":"This research introduces a novel anomaly detection method designed to enhance\nthe operational reliability of particle accelerators - complex machines that\naccelerate elementary particles to high speeds for various scientific\napplications. Our approach utilizes a Long Short-Term Memory (LSTM) neural\nnetwork to predict the temperature of key components within the magnet power\nsupplies (PSs) of these accelerators, such as heatsinks, capacitors, and\nresistors, based on the electrical current flowing through the PS. Anomalies\nare declared when there is a significant discrepancy between the LSTM-predicted\ntemperatures and actual observations. Leveraging a custom-built test stand, we\nconducted comprehensive performance comparisons with a less sophisticated\nmethod, while also fine-tuning hyperparameters of both methods. This process\nnot only optimized the LSTM model but also unequivocally demonstrated the\nsuperior efficacy of this new proposed method. The dedicated test stand also\nfacilitated exploratory work on more advanced strategies for monitoring\ninterior PS temperatures using infrared cameras. A proof-of-concept example is\nprovided.","PeriodicalId":501318,"journal":{"name":"arXiv - PHYS - Accelerator Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long Short-Term Memory Networks for Anomaly Detection in Magnet Power Supplies of Particle Accelerators\",\"authors\":\"Ihar Lobach, Michael Borland\",\"doi\":\"arxiv-2405.18321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research introduces a novel anomaly detection method designed to enhance\\nthe operational reliability of particle accelerators - complex machines that\\naccelerate elementary particles to high speeds for various scientific\\napplications. Our approach utilizes a Long Short-Term Memory (LSTM) neural\\nnetwork to predict the temperature of key components within the magnet power\\nsupplies (PSs) of these accelerators, such as heatsinks, capacitors, and\\nresistors, based on the electrical current flowing through the PS. Anomalies\\nare declared when there is a significant discrepancy between the LSTM-predicted\\ntemperatures and actual observations. Leveraging a custom-built test stand, we\\nconducted comprehensive performance comparisons with a less sophisticated\\nmethod, while also fine-tuning hyperparameters of both methods. This process\\nnot only optimized the LSTM model but also unequivocally demonstrated the\\nsuperior efficacy of this new proposed method. The dedicated test stand also\\nfacilitated exploratory work on more advanced strategies for monitoring\\ninterior PS temperatures using infrared cameras. A proof-of-concept example is\\nprovided.\",\"PeriodicalId\":501318,\"journal\":{\"name\":\"arXiv - PHYS - Accelerator Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Accelerator Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.18321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.18321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究介绍了一种新型异常检测方法,旨在提高粒子加速器的运行可靠性,粒子加速器是将基本粒子加速到高速的复杂机器,用于各种科学应用。我们的方法利用长短期记忆(LSTM)神经网络,根据流经 PS 的电流,预测这些加速器的磁体电源(PS)内关键组件(如散热器、电容器和电阻器)的温度。当 LSTM 预测的温度与实际观测结果之间存在显著差异时,就会宣布出现异常。利用定制的测试台,我们与一种不太复杂的方法进行了全面的性能比较,同时还对两种方法的超参数进行了微调。这一过程不仅优化了 LSTM 模型,还明确证明了这一新方法的卓越功效。专用测试台还有助于探索使用红外摄像机监测 PS 内部温度的更先进策略。本文提供了一个概念验证实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long Short-Term Memory Networks for Anomaly Detection in Magnet Power Supplies of Particle Accelerators
This research introduces a novel anomaly detection method designed to enhance the operational reliability of particle accelerators - complex machines that accelerate elementary particles to high speeds for various scientific applications. Our approach utilizes a Long Short-Term Memory (LSTM) neural network to predict the temperature of key components within the magnet power supplies (PSs) of these accelerators, such as heatsinks, capacitors, and resistors, based on the electrical current flowing through the PS. Anomalies are declared when there is a significant discrepancy between the LSTM-predicted temperatures and actual observations. Leveraging a custom-built test stand, we conducted comprehensive performance comparisons with a less sophisticated method, while also fine-tuning hyperparameters of both methods. This process not only optimized the LSTM model but also unequivocally demonstrated the superior efficacy of this new proposed method. The dedicated test stand also facilitated exploratory work on more advanced strategies for monitoring interior PS temperatures using infrared cameras. A proof-of-concept example is provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信