Shufeng Li, Ruxin Gu, Ru Luo, Xinyao Cheng, Xuelin Li
{"title":"通过改变电纺丝溶剂增强 Nafion 纳米纤维质子交换膜的性能","authors":"Shufeng Li, Ruxin Gu, Ru Luo, Xinyao Cheng, Xuelin Li","doi":"10.1515/polyeng-2024-0022","DOIUrl":null,"url":null,"abstract":"Nanofibrous proton exchange membranes (PEMs) play an important role in improving the performance of the fuel cells. In this paper, two kinds of Nafion nanofibrous PEMs, Nafion-E/W and Nafion-DMF, were fabricated respectively by using ethanol/water (E/W) and <jats:italic>N, N</jats:italic>-dimethylformamide (DMF) as the solvent and their properties, such as the morphologies, water uptake, area swelling, ion exchange capabilities, conductivities, and mechanical properties were examined. Nafion-E/W nanofibers showed a thick diameter of 6,089 nm and Nafion-DMF nanofibers a thin diameter of 410 nm. Then the two Nafion nanofibers were annealed to provide the PEMs. Compared with Nafion 117 membranes and Nafion-DMF PEMs, Nafion-E/W PEMs showed the greatest water uptake and area swelling of respectively 59.75 % and 30.31 % and the conductivity increased to 0.1405 S/cm, more than twice as much as Nafion 117 membranes, but the broken stress decreased to 5.49 MPa, nearly half of Nafion 117 membranes. Nafion-DMF PEMs showed the lowest water uptake, area swelling, and conductivity of 22.67 %, 10.75 %, and 0.0410 S/cm, and the broken stress reached 14.20 MPa, greater than 11.0 MPa of Nafion 117 membranes. The obtained experimental results are instructive to improve the properties of Nafion PEMs.","PeriodicalId":16881,"journal":{"name":"Journal of Polymer Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced properties of Nafion nanofibrous proton exchange membranes by altering the electrospinning solvents\",\"authors\":\"Shufeng Li, Ruxin Gu, Ru Luo, Xinyao Cheng, Xuelin Li\",\"doi\":\"10.1515/polyeng-2024-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanofibrous proton exchange membranes (PEMs) play an important role in improving the performance of the fuel cells. In this paper, two kinds of Nafion nanofibrous PEMs, Nafion-E/W and Nafion-DMF, were fabricated respectively by using ethanol/water (E/W) and <jats:italic>N, N</jats:italic>-dimethylformamide (DMF) as the solvent and their properties, such as the morphologies, water uptake, area swelling, ion exchange capabilities, conductivities, and mechanical properties were examined. Nafion-E/W nanofibers showed a thick diameter of 6,089 nm and Nafion-DMF nanofibers a thin diameter of 410 nm. Then the two Nafion nanofibers were annealed to provide the PEMs. Compared with Nafion 117 membranes and Nafion-DMF PEMs, Nafion-E/W PEMs showed the greatest water uptake and area swelling of respectively 59.75 % and 30.31 % and the conductivity increased to 0.1405 S/cm, more than twice as much as Nafion 117 membranes, but the broken stress decreased to 5.49 MPa, nearly half of Nafion 117 membranes. Nafion-DMF PEMs showed the lowest water uptake, area swelling, and conductivity of 22.67 %, 10.75 %, and 0.0410 S/cm, and the broken stress reached 14.20 MPa, greater than 11.0 MPa of Nafion 117 membranes. The obtained experimental results are instructive to improve the properties of Nafion PEMs.\",\"PeriodicalId\":16881,\"journal\":{\"name\":\"Journal of Polymer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/polyeng-2024-0022\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/polyeng-2024-0022","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Enhanced properties of Nafion nanofibrous proton exchange membranes by altering the electrospinning solvents
Nanofibrous proton exchange membranes (PEMs) play an important role in improving the performance of the fuel cells. In this paper, two kinds of Nafion nanofibrous PEMs, Nafion-E/W and Nafion-DMF, were fabricated respectively by using ethanol/water (E/W) and N, N-dimethylformamide (DMF) as the solvent and their properties, such as the morphologies, water uptake, area swelling, ion exchange capabilities, conductivities, and mechanical properties were examined. Nafion-E/W nanofibers showed a thick diameter of 6,089 nm and Nafion-DMF nanofibers a thin diameter of 410 nm. Then the two Nafion nanofibers were annealed to provide the PEMs. Compared with Nafion 117 membranes and Nafion-DMF PEMs, Nafion-E/W PEMs showed the greatest water uptake and area swelling of respectively 59.75 % and 30.31 % and the conductivity increased to 0.1405 S/cm, more than twice as much as Nafion 117 membranes, but the broken stress decreased to 5.49 MPa, nearly half of Nafion 117 membranes. Nafion-DMF PEMs showed the lowest water uptake, area swelling, and conductivity of 22.67 %, 10.75 %, and 0.0410 S/cm, and the broken stress reached 14.20 MPa, greater than 11.0 MPa of Nafion 117 membranes. The obtained experimental results are instructive to improve the properties of Nafion PEMs.
期刊介绍:
Journal of Polymer Engineering publishes reviews, original basic and applied research contributions as well as recent technological developments in polymer engineering. Polymer engineering is a strongly interdisciplinary field and papers published by the journal may span areas such as polymer physics, polymer processing and engineering of polymer-based materials and their applications. The editors and the publisher are committed to high quality standards and rapid handling of the peer review and publication processes.