DSPO:直接分类投资组合构建的端到端框架

Jianyuan Zhong, Zhijian Xu, Saizhuo Wang, Xiangyu Wen, Jian Guo, Qiang Xu
{"title":"DSPO:直接分类投资组合构建的端到端框架","authors":"Jianyuan Zhong, Zhijian Xu, Saizhuo Wang, Xiangyu Wen, Jian Guo, Qiang Xu","doi":"arxiv-2405.15833","DOIUrl":null,"url":null,"abstract":"In quantitative investment, constructing characteristic-sorted portfolios is\na crucial strategy for asset allocation. Traditional methods transform raw\nstock data of varying frequencies into predictive characteristic factors for\nasset sorting, often requiring extensive manual design and misalignment between\nprediction and optimization goals. To address these challenges, we introduce\nDirect Sorted Portfolio Optimization (DSPO), an innovative end-to-end framework\nthat efficiently processes raw stock data to construct sorted portfolios\ndirectly. DSPO's neural network architecture seamlessly transitions stock data\nfrom input to output while effectively modeling the intra-dependency of\ntime-steps and inter-dependency among all tradable stocks. Additionally, we\nincorporate a novel Monotonical Logistic Regression loss, which directly\nmaximizes the likelihood of constructing optimal sorted portfolios. To the best\nof our knowledge, DSPO is the first method capable of handling market\ncross-sections with thousands of tradable stocks fully end-to-end from raw\nmulti-frequency data. Empirical results demonstrate DSPO's effectiveness,\nyielding a RankIC of 10.12\\% and an accumulated return of 121.94\\% on the New\nYork Stock Exchange in 2023-2024, and a RankIC of 9.11\\% with a return of\n108.74\\% in other markets during 2021-2022.","PeriodicalId":501045,"journal":{"name":"arXiv - QuantFin - Portfolio Management","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DSPO: An End-to-End Framework for Direct Sorted Portfolio Construction\",\"authors\":\"Jianyuan Zhong, Zhijian Xu, Saizhuo Wang, Xiangyu Wen, Jian Guo, Qiang Xu\",\"doi\":\"arxiv-2405.15833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In quantitative investment, constructing characteristic-sorted portfolios is\\na crucial strategy for asset allocation. Traditional methods transform raw\\nstock data of varying frequencies into predictive characteristic factors for\\nasset sorting, often requiring extensive manual design and misalignment between\\nprediction and optimization goals. To address these challenges, we introduce\\nDirect Sorted Portfolio Optimization (DSPO), an innovative end-to-end framework\\nthat efficiently processes raw stock data to construct sorted portfolios\\ndirectly. DSPO's neural network architecture seamlessly transitions stock data\\nfrom input to output while effectively modeling the intra-dependency of\\ntime-steps and inter-dependency among all tradable stocks. Additionally, we\\nincorporate a novel Monotonical Logistic Regression loss, which directly\\nmaximizes the likelihood of constructing optimal sorted portfolios. To the best\\nof our knowledge, DSPO is the first method capable of handling market\\ncross-sections with thousands of tradable stocks fully end-to-end from raw\\nmulti-frequency data. Empirical results demonstrate DSPO's effectiveness,\\nyielding a RankIC of 10.12\\\\% and an accumulated return of 121.94\\\\% on the New\\nYork Stock Exchange in 2023-2024, and a RankIC of 9.11\\\\% with a return of\\n108.74\\\\% in other markets during 2021-2022.\",\"PeriodicalId\":501045,\"journal\":{\"name\":\"arXiv - QuantFin - Portfolio Management\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Portfolio Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.15833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Portfolio Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.15833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在量化投资中,构建特征分类投资组合是资产配置的重要策略。传统方法将不同频率的原始股票数据转化为用于资产排序的预测性特征因子,通常需要大量的人工设计,而且预测与优化目标之间存在偏差。为了应对这些挑战,我们推出了直接排序投资组合优化(DSPO),这是一种创新的端到端框架,可高效处理原始股票数据,直接构建排序投资组合。DSPO 的神经网络架构可将股票数据从输入无缝转换到输出,同时有效模拟所有可交易股票的时间步骤内部依赖性和相互依赖性。此外,我们还加入了一种新颖的单调逻辑回归损失,可直接最大化构建最优排序投资组合的可能性。据我们所知,DSPO 是第一种能够从原始多频率数据中完全端到端处理具有数千只可交易股票的市场交叉部分的方法。实证结果证明了 DSPO 的有效性,在 2023-2024 年期间,纽约证券交易所的 RankIC 为 10.12\% ,累计回报率为 121.94\% ;在 2021-2022 年期间,其他市场的 RankIC 为 9.11\% ,回报率为 108.74\% 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DSPO: An End-to-End Framework for Direct Sorted Portfolio Construction
In quantitative investment, constructing characteristic-sorted portfolios is a crucial strategy for asset allocation. Traditional methods transform raw stock data of varying frequencies into predictive characteristic factors for asset sorting, often requiring extensive manual design and misalignment between prediction and optimization goals. To address these challenges, we introduce Direct Sorted Portfolio Optimization (DSPO), an innovative end-to-end framework that efficiently processes raw stock data to construct sorted portfolios directly. DSPO's neural network architecture seamlessly transitions stock data from input to output while effectively modeling the intra-dependency of time-steps and inter-dependency among all tradable stocks. Additionally, we incorporate a novel Monotonical Logistic Regression loss, which directly maximizes the likelihood of constructing optimal sorted portfolios. To the best of our knowledge, DSPO is the first method capable of handling market cross-sections with thousands of tradable stocks fully end-to-end from raw multi-frequency data. Empirical results demonstrate DSPO's effectiveness, yielding a RankIC of 10.12\% and an accumulated return of 121.94\% on the New York Stock Exchange in 2023-2024, and a RankIC of 9.11\% with a return of 108.74\% in other markets during 2021-2022.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信